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Independent component analysis
alysis (ICA) has become an increasingly utilized approach for analyzing brain
imaging data. In contrast to the widely used general linear model (GLM) that requires the user to
parameterize the data (e.g. the brain’s response to stimuli), ICA, by relying upon a general assumption of
independence, allows the user to be agnostic regarding the exact form of the response. In addition, ICA is
intrinsically a multivariate approach, and hence each component provides a grouping of brain activity into
regions that share the same response pattern thus providing a natural measure of functional connectivity.
There are a wide variety of ICA approaches that have been proposed, in this paper we focus upon two distinct
methods. The first part of this paper reviews the use of ICA for making group inferences from fMRI data. We
provide an overview of current approaches for utilizing ICA to make group inferences with a focus upon the
group ICA approach implemented in the GIFT software. In the next part of this paper, we provide an overview
of the use of ICA to combine or fuse multimodal data. ICA has proven particularly useful for data fusion of
multiple tasks or data modalities such as single nucleotide polymorphism (SNP) data or event-related
potentials. As demonstrated by a number of examples in this paper, ICA is a powerful and versatile data-
driven approach for studying the brain.

© 2008 Elsevier Inc. All rights reserved.
Introduction and background
Independent component analysis (ICA) is increasingly utilized as a
tool for evaluating the hidden spatiotemporal structure contained
within brain imaging data. In this paper, we first provide a brief
overview of ICA and ICA as applied to functional magnetic resonance
imaging (fMRI) data. Next, we discuss group ICA and ICA for data
fusion with an emphasis upon the methods developed within our
group and also discuss within a larger context of the many alternative
approaches that are currently in use.

ICA is a statistical method used to discover hidden factors (sources
or features) from a set ofmeasurements or observed data such that the
sources are maximally independent. Typically, it assumes a generative
model where observations are assumed to be linear mixtures of
independent sources, and unlike principal component analysis (PCA)
which only uncorrelates the data, ICA works with higher-order
statistics to achieve independence. Uncorrelatedness is only partway
to independence, if two random variables are independent they are
uncorrelated, however not all uncorrelated random variables are
independent. An intuitive example of ICA can be given by a scatter-
plot of two independent signals s1 and s2. Fig. 1a (left, middle) show
twork, 1101 Yale Blvd NE,
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the projections for PCA and ICA, respectively, for a linear mixture of s1
and s2 and Fig. 1a (right) shows a plot of the two independent signals
(s1, s2) in a scatter-plot. PCA finds the orthogonal vectors u1,u2, but
cannot identify the independent vectors. In contrast, ICA is able to find
the independent vectors a1,a2 of the linearly mixed signals (s1, s2), and
is thus able to restore the original sources.

A typical ICA model assumes that the source signals are not
observable, statistically independent and non-Gaussian, with an
unknown, but linear, mixing process. Consider an observed
M−dimensional random vector denoted by x=[x1, x2,…,xM]T, which is
generated by the ICA model:

x =As ð1Þ
where s=[s1, s2,…,sN]T is an N-dimensional vector whose elements are
the random variables that refer to the independent sources and AM×N

is an unknown mixing matrix. Typically M≥N, so that A is usually of
full rank. The goal of ICA is to estimate an unmixingmatrixWN×M such
that y given by

y =Wx ð2Þ
is a good approximation to the ‘true’ sources: s.

Since to achieve ICA, statistical information higher than second
order is needed, it can either be generated using nonlinear functions
or can be explicitly calculated. Algorithms that use nonlinear functions
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Fig. 1. a) Illustration of the need for higher order statistics: principle component analysis (PCA) identifies orthogonal directions which capture the most variance (a second order
statistic) whereas ICA finds maximally independent directions using higher order statistics, b) Comparison of GLM and spatial ICA for fMRI data: the GLM requires the specification of
the temporal model in the design matrix, whereas ICA estimates the timecourses from the data by maximizing independences between the component images, and c) Illustration of
spatial ICA of fMRI data: the fMRI data is assumed to be comprised of linearly mixed sources, which are extracted via ICA along with their corresponding timecourses.
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to generate higher-order statistics have been the most popular ICA
approaches and there are a number of algorithms derived based on
maximum likelihood estimation, maximization of information trans-
fer, mutual information minimization, and maximization of non-
Gaussianity. The first three approaches are equivalent to each other,
and they coincide with maximization of non-Gaussianity when the
unmixingmatrixW is constrained to be orthogonal (Adali et al., 2008).
The algorithms derived within these formulations have optimal large
sample properties in the maximum likelihood sense when the
nonlinearity within each algorithm is chosen to match the source
density. Two commonly used ICA algorithms derived within these
formulations are Infomax (Bell and Sejnowski, 1995; Lee et al., 1999)
and FastICA (Hyvarinen and Oja, 1997). Another popular algorithm is
joint approximate diagonalization of eigenmatrices (JADE) (Cardoso
and Souloumiac,1993), which relies on explicit computation of fourth-
order statistical information. Both Infomax and FastICA typically work
with a fixed nonlinearity or one that is selected from a small set, e.g.,
two in the case of extended Infomax (Bell and Sejnowski, 1995; Lee et
al., 1999). These algorithms typically work well for symmetric
distributions and are less accurate for skewed distributions and for
sources close to Gaussian. Since optimality condition requires the
nonlinearities to match the form of source distributions, there are a
number of adaptation strategies that are developed. A flexible ICA
using generalized Gaussian density model method is introduced in
(Choi et al., 2000). Other flexible extensions of ICA include non-
parametric ICA (Boscolo et al., 2001) and kernel ICA (Bach and Jordan,
2002) as well as approaches introduced in (Hong et al., 2005; Vlassis
and Motomura, 2001). The variety of recent approaches for perform-
ing ICA and its applications in areas as diverse as biomedicine,
astrophysics, and communications demonstrates the vitality of
research in this area.

ICA of fMRI data

Following its first application to fMRI (McKeown et al., 1998), ICA
has been successfully utilized in a number of exciting fMRI applica-
tions and especially in those that have proven challenging with the
standard regression-type approaches for a recent collection of
examples see (Calhoun and Adali, 2006; McKeown et al., 2003).
Spatial ICA finds systematically non-overlapping, temporally coherent
brain regions without constraining the shape of the temporal
response. The temporal dynamics of many fMRI experiments are
difficult to study with fMRI due to the lack of a well-understood brain-
activation model whereas ICA can reveal inter-subject and inter-event
differences in the temporal dynamics. A strength of ICA is its ability to
reveal dynamics for which a temporal model is not available (Calhoun
et al., 2002). A comparison of the GLM approach and ICA as applied to
fMRI analysis is shown in Fig. 1b.

Independent component analysis is used in fMRI modeling to
study the spatio-temporal structure of the signal, and it can be used to
discover either spatially or temporally independent components
(Jung, 2001). Most applications of ICA to fMRI use the former approach
and seek components that are maximally independent in space. In
such a setting, we let the observation data matrix be X, an N×M
matrix (where N is the number of time points and M is the number of
voxels) as shown in Fig. 1b. The aim of fMRI component analysis is
then to factor the data matrix into a product of a set of time courses
and a set of spatial patterns. An illustration of how ICA decomposes
the data into a parsimonious summary of images and time courses is
shown in Fig. 1c. The number of components is a free parameter,
which has previously been either empirically determined or esti-
mated. There are a number of approaches for estimating the number
of components using information theoretic approaches (Beckmann
and Smith, 2004; Li et al., 2007).

Since the introduction of ICA for fMRI analysis, the choice of spatial
or temporal independency has been controversial. However, the two
options are merely two different modeling assumptions. McKeown et
al. argued that the sparse distributed nature of the spatial pattern for
typical cognitive activation paradigms would work well with spatial
ICA (sICA). Furthermore, since the proto-typical confounds are also
sparse and localized, e.g., vascular pulsation (signal localized to larger
veins that are moving as a result of cardiac pulsation) or breathing
induced motion (signal localized to strong tissue contrast near
discontinuities: qtissue edgesq), the Infomax algorithm with a sparse
prior is very well suited for spatial analysis (Petersen et al., 2000) and
has also been used for temporal ICA (Calhoun et al., 2001c) as have
decorrelation-based algorithms (Petersen et al., 2000). Stone et al.,
proposed a method which attempts to maximize both spatial and
temporal independence (Stone et al., 1999). An interesting combina-
tion of spatial and temporal ICA was pursued by Seifritz et al. (2002);
they used an initial sICA to reduce the spatial dimensionality of the
data by locating a region of interest in which they then subsequently
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performed temporal ICA to study in more detail the structure of the
non-trivial temporal response in the human auditory cortex.

Group ICA of fMRI data

Unlike univariate methods (e.g., regression analysis, Kolmo-
gorov–Smirnov statistics), ICA does not naturally generalize to a
method suitable for drawing inferences about groups of subjects.
For example, when using the general linear model, the investigator
specifies the regressors of interest, and so drawing inferences about
group data comes naturally, since all individuals in the group share
the same regressors. In ICA, by contrast, different individuals in the
group will have different time courses, and they will be sorted
differently, so it is not immediately clear how to draw inferences
about group data using ICA. Despite this, several ICA multi-subject
analysis approaches have been proposed (Beckmann and Smith,
2005; Calhoun et al., 2001a; Calhoun et al., 2001b; Calhoun et al.,
2004a; Esposito et al., 2005; Guo and Giuseppe, In Press; Lukic et
al., 2002; Schmithorst and Holland, 2004; Svensen et al., 2002). The
various approaches differ in terms of how the data is organized
prior to the ICA analysis, what types of output are available (e.g.
single subject contributions, group averages, etc), and how the
statistical inference is made.

A summary of several group ICA approaches is provided in Fig. 2.
Approaches can be grouped into five categories. Fig. 2a illustrates
approaches that perform single-subject ICA and then attempt to
combine the output into a group post hoc by using approaches such as
self-organized clustering or spatial correlation of the components
(Calhoun et al., 2001a; Esposito et al., 2005). This has the advantage of
allowing for unique spatial and temporal features, but has the
disadvantage that since the data are noisy the components are not
necessarily unmixed in the same way for each subject. The other four
approaches involve an ICA computed on the group data directly.
Fig. 2. Several Group ICA Approaches: A comparison of 5 group ICA approaches and some of th
ICA analyses run on each subjects, followed by correlation or clustering to enable group inte
approach which also can include a back-reconstruction step to compute single subject maps a
proposed. Finally, e) tensor based approaches stack the data into a cube.
Temporal concatenation Fig. 2b and spatial concatenation Fig. 2c have
both been examined. The advantage of these approaches is that they
perform one ICA, which can then be divided into subject specific parts,
hence the comparison of subject differences within a component is
straightforward. The temporal concatenation approach allows for
unique time courses for each subject, but assumes common group
maps whereas the spatial concatenation approach allows for unique
maps but assumes common time courses. Although they are really just
two different approaches for organizing the data, temporal concate-
nation appears towork better for fMRI data (Schmithorst and Holland,
2004) most likely because the temporal variations in the fMRI signal
are much larger than the spatial variations, and has been widely used
for group ICA of fMRI data.

The temporal concatenation approach is implemented in the
MELODIC software (http://www.fmrib.ox.ac.uk/fsl/) and also the
GIFT Matlab software (http://icatb.sourceforge.net/). The GIFT soft-
ware additionally implements a back-reconstruction step which
produces subject specific images (Calhoun et al., 2001b). This enables
a comparison of both the time courses and the images for one group
or multiple groups (Calhoun et al., 2008) (see simulation in (Calhoun
et al., 2001b) which shows ICA with temporal concatenation plus
back-reconstruction can capture variations in subject specific
images). The approach implemented in GIFT thus trades-off the use
of a common model for the spatial maps against the difficulties of
combining single subject ICA. An in-between approach would be to
utilize temporal concatenation separately for each group (Celone et
al., 2006), although in this case matching the components post hoc
becomes again necessary. The approach in Fig. 2d involves averaging
the data prior to performing ICA. This approach is less computation-
ally demanding, but makes a more stringent assumption that
requires a common time course and a common spatial map. Finally,
the tensorial approach in Fig. 2e (implemented inMELODIC) involves
estimating a common time course and a common image for each
e software packages which implement these methods as a primary pipeline. a) separate
rference, b) temporal concatenation followed by an aggregate ICA analysis is a popular
nd timecourses, c) spatial concatenation or d) pre-averaging prior to ICA have also been
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component but allows for a subject specific parameter to be
estimated.

Higher order tensor decompositions (also known as multidimen-
sional, multi-way, or n-way), have received renewed interest recently,
although their adaptation to group and multi-group fMRI data is still
being explored. Fig. 2e shows an approach based upon a three-
dimensional tensor that has been developed to estimate a single
spatial, temporal, and subject-specific ‘mode’ for each component to
attempt to capture the multidimensional structure of the data in the
estimation stage (Beckmann and Smith, 2005). This approach
however may not work as well (without additional preprocessing) if
the time courses between subjects are different, such as in a resting
state study. A detailed comparison of several group ICA approaches
including temporal concatenation and tensor ICA is provided in a
recent paper (Guo and Giuseppe, In Press).

In the remainder of this paper, we focus on the group ICA approach
implemented in the GIFT software (Calhoun et al., 2001b), which uses
multiple data reduction steps following data concatenation to reduce
the computational load, along with back-reconstruction and statistical
comparison of individual maps and time courses following ICA
estimation. An example group ICA analysis of nine subjects perform-
ing a four cycle alternating left/right visual stimulation task is
presented in Fig. 3 (from Calhoun et al., 2001b). Separate components
for primary visual areas on the left and the right visual cortex
(depicted in red and blue, respectively) were consistently task-related
with respect to the appropriate stimulus. A large region (depicted in
green) including occipital areas and extending into parietal areas
appeared to be sensitive to changes in the visual stimuli. Additionally
some visual association areas (depicted in white) had time courses
that were not task related. As we discuss later, group inference or
comparison of groups can be performed by performing statistics on
either the ICA images or the time courses.

ICA for data fusion

Many studies are currently collecting multiple types of imaging
data from the same participants. Each imaging method reports on a
Fig. 3. fMRI Group ICA results (from Calhoun et al., 2001b): Group ICA identifies temporally
paradigm ICA identified strongly task-related networks (blue, red) as well as transient and
limited domain and typically provides both common and unique
information about the problem in question. Approaches for combining
or fusing data in brain imaging can be conceptualized as having a place
on an analytic spectrum with meta-analysis (highly distilled data) to
examine convergent evidence at one end and large-scale computa-
tional modeling (highly detailed theoretical modeling) at the other
end (Husain et al., 2002). In between are methods that attempt to
perform a direct data fusion (Horwitz and Poeppel, 2002). One
promising data fusion approach is to first process each image type and
extract features from different modalities. These features are then
examined for relationships among the data types at the group level
(i.e., variations among individuals or between patients and controls).
This approach allows us to take advantage of the ‘cross’-information
among data types and when performing multimodal fusion provides a
natural link among different data types (Ardnt, 1996; Calhoun et al.,
2006c; Savopol and Armenakis, 2002).

A natural set of tools for performing data fusion include those that
transform data matrices into a smaller set of modes or components.
Such approaches include those based upon singular value decom-
position (SVD) (Friston et al., 1996; McIntosh et al., 1996) as well as ICA
(McKeown et al., 1998). An advantage of ICA over variance-based
approaches like SVD or PCA is the use of higher-order statistics to
reveal hidden structure. In this paper, we describe two approaches for
data fusion, joint ICA and parallel ICA. We show two examples, the
first one involving event-related potential (ERP) and fMRI data and a
second one on fMRI and genetic data.

Theory and implementation

In this section, we review the methods behind group ICA, joint ICA,
and parallel ICA.

Group ICA of fMRI

As we mentioned earlier, the group ICA approach implemented in
GIFT incorporates temporal concatenation plus back-reconstruction.
Fig. 4 (top) provides a graphical representation of the GIFT approach
coherent networks which are spatially distinct. In a relatively simple visual stimulation
non-task related networks (green, white, pink).



Fig. 4. Graphical Illustration of Group ICA as implemented in GIFT: Group ICA as implemented in GIFT incorporates temporal concatenation plus a back-reconstruction step to produce
single subject maps and timecourses. The individual subject data is projected onto the subject-specific partition of the mixing matrix to compute the corresponding single-subject
component image (top panel). Which of these components is of interest depends upon the question being asked which can draw upon comparisons of the component images or
timecourses. Group ICA enables voxel-wise testing of the components images or fitting of a model to the component timecourses (bottom panel).
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that essentially involves estimating a mixing matrix which has
partitions that are unique to each subject. Once the mixing matrix is
estimated, the component maps for each subject can be computed by
projecting the single subject data onto the inverse of the partition of
the mixing matrix that corresponds to that subject. In the end this
provides subject specific time courses and images which can be used
to make group and inter-group inferences.

An additional aspect to consider is that GIFT performs multiple
data reduction steps, typically using PCA, primarily for computational
reasons to reduce the amount of required memory. Mathematically, if
we let Xi=Fi−1Yi be the L×V reduced data matrix from subject i, where
Yi is the K×V data matrix (containing the preprocessed and spatially
normalized data), Fi−1is the L×K reducing matrix (determined by the
PCA decomposition), V is the number of voxels, K is the number of
fMRI time points and L is the size of the time dimension following
reduction. The reduced data from all subjects is concatenated into a
matrix and reduced using PCA to N dimensions (the number of
components to be estimated). The LM×V reduced, concatenated
matrix for the M subjects is

X =G−1
F−1
1 Y1
v

F−1
M YM

2
4

3
5: ð3Þ

where G−1 is an N×LM reducing matrix (also determined by a PCA
decomposition) and is multiplied on the right by the LM×V
concatenated data matrix for the M subjects. Following ICA estima-
tion, we canwrite X =AS, whereA is the N × Nmixing matrix and S is
the N×V component map. Substituting this expression for X into Eq.
(3) and multiplying both sides by G, we have

GA^S^ =

" F−1
1 Y1
v

F−1
M YM

#
: ð4Þ

Partitioning the matrix G by subject provides the following
expression.

G1
v

GM

2
4

3
5A^ S^ = F−1

1 Y1
v

F−1
M YM

2
4

3
5: ð5Þ

We then write the equation for subject i by working only with the
elements in partition i of the above matrices such that

GiA
^ S^i = F−1

i Yi: ð6Þ
Thematrix Si in Eq. (6) contains the single subject maps for subject

i and is calculated from the following equation

S^i = GiA
^

� �−
1Fi−1Yi: ð7Þ

We now multiply both sides of Eq. (6) by Fi and write

Yi≈FiGiA
^ Si: ð8Þ



S168 V.D. Calhoun et al. / NeuroImage 45 (2009) S163–S172
which provides the ICA decomposition of the data from subject i,
contained in the matrix Yi. The N×V matrix Si contains the N
source maps and the K × N matrix FiGiA is the single subject
mixing matrix and contains the time course for each of the N
components.

Group inferences can be made by analyzing the subject specific
time courses and spatial maps. Fig. 4 (bottom) categorizes these
analyses into three main areas. To evaluate spatial properties of a
given component statistically, one can perform voxel-wise tests on
the spatial maps (Fig. 4; bottom left). The time courses can be
analyzed by fitting to a GLM (the same model one would use for a
GLM analysis; e.g. multiple regression), but instead of fitting to the
voxel-wise data the ICA time courses are the dependent variable
(Fig. 4; bottom middle). The estimated parameters can then be
entered into a second level statistical analysis to make inferences
about how much each component is modulated by a given
stimulus, whether one component is modulated more by one
stimulus than another, whether one group shows a stronger task-
modulation than another, etc (Stevens et al., 2007). This provides a
powerful way to make inferences about the components. Finally,
one may be interested in the non-task-related components (or
components in a resting-state study). In this case, one can evaluate
differences in the spectral power between groups (Garrity et al.,
2007) or compute additional parameters such as the fractal
dimension of the subject component time courses (Fig.4; bottom
right).

Joint and parallel ICA

Next, we introduce two approaches for performing data fusion
with ICA, joint ICA and parallel ICA (both of which are
implemented in the Matlab-based Fusion ICA Toolbox (FIT: http://
icatb.sourceforge.net).

Joint ICA

Joint ICA is an approach that enables us to jointly analyze
multiple modalities which have all been collected in the same set of
subjects. In our development, we primarily consider a set of
extracted features from each subject’s data, these data form the
multiple observations—the vertical dimension in our group dataset.
Given two sets of group data (can be more than two, for simplicity,
Fig. 5. Illustration of joint ICA and Parallel ICAmodels: Joint ICA (left) assumes a shared contr
using the correlation between the subject profiles for the two modalities.
we first consider two), XF and XG, we concatenate the two datasets
side-by-side to form XJ and write the likelihood as

L Wð Þ = ∏
n = 1

N

∏
v = 1

V
pJ;n uJ;v
� �

; ð9Þ

where uJ=WxJ. Here, we use the notation in terms of randomvariables
such that each entry in the vectors uJ and xJ correspond to a random
variable, which is replaced by the observation for each sample n=1,…,
N as rows of matrices UJ and XJ. When posed as a maximum likelihood
problem, we estimate a joint unmixing matrix W such that the
likelihood L(W) is maximized.

Let the two datasets XF and XG have dimensionality N×V1 and
N×V2, then we have

L Wð Þ = ∏
n = 1

N

∏
v = 1

V1
pF;n uF;v

� �
∏
v = 1

V2
pG;n uG;v

� � !
; ð10Þ

Depending on the data types in question, the above formula can be
made more or less flexible.

This formulation characterizes the basic jICA approach and
assumes that the sources associated with the two data types (F
and G) modulate the same way across N subjects (see Fig. 5a). The
assumption of the same linear covariation for both modalities is
fairly strong, however it has the advantage of providing a
parsimonious way to link multiple data types and has been
demonstrated in a variety of cases with meaningful results (Calhoun
et al., 2006a; Calhoun et al., 2006b; Calhoun et al., 2006c; Eichele et
al., 2008; Moosmann et al., 2008).

There are different ways to relax the assumptions made in the
formulation above, such as instead of constraining the two types of
sources to share the same mixing coefficients, i.e., to have the same
modulation across N samples, we can require that the form of
modulation across samples for the sources from two data types to
be correlated but not necessarily the same (Correa et al., 2008). The
approach we discuss next, called parallel ICA provides this
additional flexibility in modeling (Liu and Calhoun, 2006; Liu and
Calhoun, 2007).

Parallel ICA

As noted earlier, the strong regularization imposed by the jICA
framework can be relaxed in a number of ways to allow for more
ibution matrix for the twomodalities. Parallel ICA (right) updates separate ICA processes
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Fig. 6. Naturalistic driving (from Calhoun et al., 2002): Multiple networks identified during simulated driving. ICA enables us to study the complex and overlapping dynamics that
occur during a naturalistic task.
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flexibility in the estimation. One such approachwe developed is called
parallel independent component analysis (paraICA). As a framework
to investigate the integration of data from two imaging modalities,
this method identifies components of both modalities and connec-
tions between them through enhancing intrinsic interrelationships
(see Fig. 5b). We have applied this approach to link fMRI/ERP data and
Fig. 7. Pair-wise comparisons of the Control, Schizophrenia, and Bipolar Groups (from Ca
differences for each pair-wise comparison (left). Note that these maps are generated from all
approach. On the right is plotted the average beta weights for the stimuli broken out by gro
also fMRI and genetic data (single nucleotide polymorphism arrays)
(Liu and Calhoun, 2006; Liu and Calhoun, 2007; Liu et al., In Press).
Results show that paraICA provides stable results and can identify the
linked components with a relatively high accuracy.

In our initial application of paraICA, we defined a genetic
independent component as a specific SNP association, i.e., a group of
lhoun et al., 2008): Two-sample t-tests were performed to illustrate most significant
subjects and actual classification regions will be slightly different due to the leave-1-out
up.
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SNPs with various degrees of contribution, which partially determines
a specific phenotype or endophenotype. This association can be
modeled as a linear combination of SNP genotypes (Dawy et al., 2005;
Lee and Batzoglou, 2003),

s = β1 � snp1 + β2 � snp2 +: : : + βn1 � snpn; ð11Þ

where, snp is a genotype at a given locus and β is a weight contributed
from a SNP to the genetic association. Beside the independent
component, the weight itself is also of interest, implying the influence
factor and type, i.e., inhibitory or excitatory to a phenotype. With the
assumption that each component has an independent distribution
pattern in 367 SNPs, we constructed the SNP data matrix, X, in a
participant-by-SNP direction. Themixing process is presented in Eq. (12),

Xs = xs1; xs2; xs3; :::; xsn½ �T ; Ss = ss1; ss2; ss3; :::; ssm½ �T ;
Ss =WsXs;
As =W−1

s ; As = as1; as2; as3:::asn
� �T ð12Þ

where, n is the number of participants and m is the number of
components. xsi is a vector of 367 SNP genotypes for one participant. ssi
is a vector of 367 SNPweights for one genetic component. As is thematrix
Fig. 8. Fusion of ERP and fMRI data (from Eichele et al., 2008): Time course and topography fo
The difference wave was subjected to a pointwise one-sample t-test, black dots indicate time
(tN6.93). The bilateral temporal activation in the linked fMRI component is shown as a surfa
pattern. The maps are thresholded at 1% false discovery rate, cluster extent 5 voxels. Positiv
of the loading parameters, presenting the influence of each SNP
component on participants.

In our current formulation, the relationship between brain
function and the genetic component is calculated as the correlation
between the columns of the fMRI Af matrix and the SNP As matrix
(note this can also be defined using other criteria such as mutual
information, to identify nonlinear coupling between fMRI and SNP
data). Thus, we have the correlation term and the maximization
function based upon entropy. The procedure of parallel ICA is
illustrated in Fig. 5b, where data 1 is the fMRI data and data 2 is the
SNP data. The algorithm proceeds such that two demixing matricesW
are updated separately during which the component with highest
correlation from each modality is selected and used to modify the
update of the demixing matrix based on the correlation value using
appropriate stopping criteria.

Examples

In this section, we present examples of results from previous work
using group ICA, joint ICA, and parallel ICA. The first example shows an
analysis of a simulated driving paradigm, a case in which ICA is
particularly useful as it is a naturalistic task that is difficult to
r EEG-tIC1 for standard and target epochs as well as the difference wave between them.
frames with significant difference from zero at pb .05, Bonferroni corrected for 512 tests
ce rendering (top right). Additional slices in the lower half illustrate the overall spatial
e correlation is plotted in red, inverse correlation in blue.



Fig. 9. Fusion of fMRI and genetic (SNP) data (from Liu et al., In Press): Parallel ICA provides an fMRI part (left) and a SNP part (bottom right) in addition to a correlated subject profile
for both fMRI and SNP data (top right).
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parameterize for use in a traditional GLM analysis. fMRI data from 15
subjects were collected during a 10 min paradigm with alternating
1 min blocks of fixation, simulated driving, and watching (Calhoun
et al., 2002). ICA time courses were first analyzed to evaluate task-
relatedness. Six components were identified and entered into a
voxelwise one-sample t-test. A total of six components are presented
showing different dynamics in response to simulated driving. In this
case, ICA has proven to be a very powerful approach for analysis and
enabled us to develop a model for the neural correlates of simulated
driving which is nicely related to existing models based upon
behavioral data (Calhoun et al., 2005; Calhoun et al., 2002; Calhoun
et al., 2004b; Meda et al., In Press) (Fig. 6).

The second example we present is an analysis of fMRI data
collected from an auditory oddball task for two patients groups as
well as healthy controls. Back-reconstructed component maps were
entered into two sample t-tests to evaluate pair-wise differences
between the three groups. Results are presented for each group for
two components, one in temporal lobe and also the default mode
(Fig. 7; left). We performed a multiple regression including the
target, novel, and standard stimuli and the mean of the estimated
beta parameters is shown in Fig. 7 (right). We were also able to
utilize these results to accurately differentiate healthy controls,
schizophrenia patients, and patients with bipolar disorder. This
example illustrates the ability of group ICA to differentiate groups
and also shows both a comparison of the spatial maps and the time
courses.

The next example involves data fusion of ERP and fMRI data
using joint ICA. The fMRI data and the 64 channel ERP data are
entered into a joint ICA analysis. This provides us with not only a
temporal ERP profile and a spatial fMRI profile, but the topography
from the ERP data provides additional information for interpretation
(see Fig. 8). We developed a method for parallel spatial and
temporal independent component analysis for concurrent multi-
subject single-trial EEG-fMRI that addresses the mixing problem in
both modalities, and integrates the data via correlation of the trial-
to-trial modulation of the recovered fMRI maps and EEG time
courses. The method affords extraction of a previously missed
spatiotemporal process corresponding to the auditory onset
response and subsequent low-level orienting/change detection. For
full details please see (Eichele et al., 2008).

Our final example shows results from a parallel ICA analysis of
auditory oddball fMRI data and 367 SNPs from schizophrenia patients
and healthy controls (Liu et al., In Press). When 43 healthy controls
and 20 schizophrenia patients, all Caucasian, were studied, we found a
correlation of 0.38 between one fMRI component and one SNP
component. This fMRI component consisted of regions in parietal lobe,
right temporal lobe, and bilateral frontal lobe. The relevant SNP
component was contributed to significantly by 10 SNPs located in
genes including those coding for the nicotinic alpha-7cholinergic
receptor, aromatic amino acid decarboxylase, disrupted in schizo-
phrenia 1, among others. Both fMRI and SNP components showed
significant differences in loading parameters between the schizo-
phrenia and control groups (p=0.0006 for the fMRI component;
p=0.001 for the SNP component). The parallel ICA framework enabled
us to identify interactions between brain functional and genetic
information; our findings provide a proof-of-concept that genomic
SNP factors can be investigated by using endophenotypic imaging
findings in a multivariate format (Fig. 9).

Summary

ICA is a powerful data driven approach that can be used to analyze
group fMRI data or to analyze multimodal data including fMRI, ERP,
and genetic data. The examples demonstrate the utility and diversity
of ICA-based approaches for the analysis of brain imaging data.
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