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Summary

The control and adaptation of bimanual movements is

often considered to be a function of a fixed set of
mechanisms [1, 2]. Here, I show that both feedback

control and adaptation change optimally with task
goals. Participants reached with two hands to two

separate spatial targets (two-cursor condition) or
used the same bimanual movements to move a cursor

presented at the spatial average location of the two
hands to a single target (one-cursor condition). A force

field was randomly applied to one of the hands. In the
two-cursor condition, online corrections occurred only

on the perturbed hand, whereas the other movement
was controlled independently. In the one-cursor con-

dition, online correction could be detected on both
hands as early as 190 ms after the start. These changes

can be shown to be optimal in respect to a simple task-

dependent cost function [3]. Adaptation, the influence
of a perturbation onto the next movement, also de-

pended on task goals. In the two-cursor condition,
only the perturbed hand adapted to a force perturba-

tion [2], whereas in the one-cursor condition, both
hands adapted. These findings demonstrate that the

central nervous system changes bimanual feedback
control and adaptation optimally according to the

current task requirements.

Results and Discussion

Optimal control theory [3] predicts that the coordination
of movements depends on task goals. Here, I show that
humans alter bimanual feedback control according to
this prediction. In experiment 1, participants (n = 10) per-
formed a bimanual reaching task in separate sessions
under two conditions (Figure 1A). In the two-cursor con-
dition, participants simultaneously moved two cursors,
one with each hand, toward separate visual targets. In
the one-cursor condition, participants performed phys-
ically similar reaching movements but moved a single
cursor, presented at the average position of the two
hands, to a single target. So that feedback control could
be tested, in half of the trials, a randomly selected hand
was perturbed with a velocity-dependent leftward or
rightward force field [4].

The optimal feedback control policy for each condi-
tion, i.e., the mapping from the state of the two hands
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to motor commands, can be derived by the minimization
of a task-dependent cost function. For the two-cursor
condition, the cost function penalizes the distance
between of the left and right hands (pLand pR) from their
respective targets (g), and any residual velocity (v) in the
end of movement, plus the total sum of the squared
motor commands (u):
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By using a plausible model of the human arm, I derived
the weights of the cost function to fit the velocity profile
of unperturbed movements (see the Experimental
Procedures for details). Furthermore, I estimated arm
stiffness to fit the movement of the perturbed hand in
the two-cursor condition. I then asked what movements
would be predicted for the unperturbed hand. The opti-
mal control policy for the two-cursor task controls the
left and right hands independently; when one hand is
perturbed by a velocity-dependent force field, correc-
tions are only performed with that hand (Figure 1B,
left). This prediction was confirmed by the experimental
data. No significant changes in the movement of the
unperturbed hand were found (Figures 1C–1E, left).

For the one-cursor condition, I changed the spatial
term to reflect the distance between the cursor and
target, rather than between individual hands and targets:
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All other system and cost function parameters were
kept the same. Under this cost function, the system
produces the same unperturbed movements as in the
two-cursor condition; however, it responds very differ-
ently to perturbations. When one hand is perturbed,
both hands make corrections, minimizing the overall
motor commands necessary (Figure 1B, right).

The behavior of the participants followed closely this
prediction (Figures 1C–1E, right). The kinematics of the
movements during unperturbed movements was simi-
lar. However, starting at 190 ms, the unperturbed hand
showed coordinated corrections; at this time, the lateral
velocity started to depend significantly on the direction
of the force applied to the other hand. As a quantitative
measure of the amount of correction, I computed the
proportion of the initial direction error corrected by
each hand (Figure 2A). When going from the two- to
the one-cursor condition, the between-hand correction
rate increased, whereas the within-hand correction
rate decreased, matching quantitatively the predictions
of optimal control theory.

This finding might simply reflect the visual feedback;
just seeing the common cursor being perturbed is
enough to elicit bilateral corrections. So that this could
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Figure 1. Experiment 1 Shows Bilateral Movement Corrections in the One-Cursor Condition

(A) In the two-cursor condition, participants reached for two separate targets. In the one-cursor condition, they reached with both hands to move

a common cursor to a single target. One of the hands was perturbed with a leftward (red) or rightward (blue) force field or was unperturbed

(black).

(B) Predicted movement trajectories based on the optimal control policy.

(C) Movement trajectories observed in experiment 1, averaged across participants and hands.

(D) The y velocity (dashed line) and x velocity (red, blue, and black solid lines) of the perturbed hand.

(E and F) The x velocity of the unperturbed hand with (E) and without (F) visual feedback shows the onset of the correction in the one-cursor

condition. The shaded area indicates the across-subject standard error (SE).
be tested, the visual feedback of the cursor was with-
drawn in half of the trials, making the one- and two-
cursor conditions identical except for task instructions.
Even without visual feedback, participants showed
similar bilateral reactions in the one-cursor condition
(Figures 1F and 2A). Thus, just by changing whether
participants thought they controlled one or two end
effectors, feedback control based on proprioceptive
information could be manipulated.

When adding signal-dependent noise separately to
the movement of each hand, the optimal control policy
for the one-cursor condition predicts that the endpoints
of the two hands should become negatively correlated.
The effect arises because of bilateral corrections of mo-
tor noise, and should gradually arise over the course of
the movement (Figures 3A and 3B). Congruent with
this prediction, the movement endpoints on unper-
turbed trials were more negatively correlated in the
one-cursor than in the two-cursor condition, both with
(20.81 versus 20.22, t(9) = 7.283, p < 0.001) and without
(20.44 versus 20.18, t(9) = 3.881, p = 0.004) visual feed-
back. Furthermore, the effect arose after the predicted
time course (Figures 3C and 3D). Thus, participants
corrected only for task-relevant error [3, 5], whereas
negative covariation of the hands accumulated.

I then investigated how participants adapted to the
force fields. Previous studies have found the indepen-
dent adaptation of each arm during bimanual move-
ments [2]. By using a state-space model (see the Exper-
imental Procedures), I estimated how much the initial
direction of each hand in trial n + 1 (at 160 ms) was influ-
enced by a perturbation experienced in trial n, either on
the same hand (within-hand adaptation rate) or on the
other hand (between-hand adaptation rate).
In the two-cursor condition, the within-hand adapta-
tion rate was 0.12, with limited generalization to the
other hand (Figure 2B). In the one-cursor condition, the
between-hand adaptation rate was significantly higher
[t(9) = 3.37, p = 0.008] and the within-hand significantly
lower [t(9) = 2.43, p = 0.037]. Here, a force field applied
to one hand changed the initial direction in both hands.
Thus, how participants adapted to a unilateral force field
changed substantially with the task goals. A possible
account for the parallel changes feedback control and
adaptation is that the correction of each hand in the
last trial dictates how much the movement should adapt
in the next [6]. Consistent with this hypothesis, the
between-hand correction and adaptation rate in experi-
ment 1 were significantly correlated (Figure 2C).

So that the changes in adaptation could be confirmed,
participants in experiment 2 (n = 8) adapted for 80 trials
to a velocity-dependent force field of a constant direc-
tion applied to one of the hands. The perturbed hand
(Figure 4A) quickly adapted to the large initial errors.
This can also be seen in the change of initial direction
in catch trials, in which no force field was applied
(dashed line). In the two-cursor condition, adaptation
was restricted to the perturbed hand. In the one-cursor
condition, however, the unperturbed hand (Figure 4B)
also changed its initial direction, such that it opposed
the force field [t(7) = 7.89, p < .001], allowing the per-
turbed hand to adapt less than in the two-cursor condi-
tion [t(7) = 2.67, p = 0.032].

Previous work has shown that the control of bimanual
movements can change with task requirements [5, 7],
visual feedback [8, 9], and attention [10]. Here, I provide
another clean demonstration of this important feature of
the human motor system and show that this flexibility
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can be well described as the optimization of simple task-
dependent cost functions. The predictions of optimal
control theory are qualitatively robust over a wide range
of parameter values and are well matched by the empir-
ical data. The results also show that changes in optimal
feedback control influence how the motor system
adapts to novel environments.

Experimental Procedures

Experiment 1 Methods

All experimental procedures were approved by the ethics committee

of the School of Psychology at the University of Wales, Bangor. Ten

right-handed participants (two of them male, average age = 21.3

years) made 10 cm reaching movements while holding on to a

Figure 2. Task-Dependent Changes in Correction and Adaptation

Rates

(A) Correction rate, the proportion of initial direction error corrected

by the same (black) and other (gray) hand within the same trial. The

predicted optimal correction rates are plotted as dotted lines.

(B) Adaptation rate, the influence of an initial direction error onto the

initial direction of the same (black) and other (gray) hand. Error bars

indicate the between-subject standard error of the mean (SEM).

(C) For the one-cursor condition only, the between-hand correction

rate correlates significantly with the between-hand adaptation rate.

Each data point represents one hand of one participant under either

the visual-feedback or no-visual-feedback condition.
robotic device with each hand (Phantom 3.0, SensAble Technologies).

Movements were performed in the natural reaching space in an

upward-forward direction, involving shoulder and elbow movements,

with the elbow pointing downwards. A simulated spring (150 N/m)

restricted the movements to a frontoparallel plane, 20� from vertical.

A horizontal crossbar stabilized the upper body and minimized inter-

action torques between left and right arm movements. By using two

mirrors mounted at 90� to each other, participants viewed one

monitor with the left eye and one monitor with the right. This stereo-

scopic display was calibrated to the robotic devices such that stimuli

could be displayed at their veridical 3D locations.

Participants moved the two cursors (8 mm diameter) into the start-

ing spheres, displayed 6 cm to the left and right of the body midline

at breast height. In the two-cursor condition, two targets (8 mm di-

ameter) were presented 10 cm in a forward-upward direction above

the starting spheres. In the one-cursor condition, a single target was

presented at body midline, and a single cursor was presented at

the spatial average position of the two hands. Participants were

instructed to reach the target(s) by moving both hands rapidly

upwards. A movement started when the hand reached a speed of

3 cm/s and ended when the speed fell below 1.5 cm/s for 30 ms.

Movement times of less than 700 ms with a spatial accuracy of better

than 5 mm were rewarded.

Participants performed one session in the one-cursor condition

and one session in the two-cursor condition. Sessions were sepa-

rated by at least one day, and their order was counterbalanced

between participants. Each session consisted of nine blocks of 64

trials. The first block was a training block with only unperturbed tri-

als, and eight blocks with random perturbations followed: In half of

the trials, a leftward or rightward force field was presented to one of

the hands with equal probability. The sideways force was propor-

tional (3.5 Ns/m) to the upward velocity along the movement plane.

For the last six blocks of each session, the visual feedback of the

cursor was withdrawn between the start and end of the movement

on half the trials. The trials were randomly chosen, such that partic-

ipants did not know until after the movement started whether they

would have visual feedback or not.

Experiment 2 Methods

Eight different right-handed participants (one1 of them male, aver-

age age = 21) were run in experiment 2. The apparatus, movements,

and stimuli were identical to those used in experiment 1. The exper-

iment consisted two practice blocks of 60 trials, the first in the two-

cursor condition, and the second in the one-cursor condition. The

participants then performed eight adaptation runs, each consisting

of 20 unperturbed movements, 80 movements with a velocity-

dependent force field applied to one of the hands, and 20 unper-

turbed movements. The force field was identical to the one used in

experiment 1, but had a constant direction for the whole adaptation

run. Twelve out of the 80 movements were randomly chosen to be

catch trials in which no force was present. Each participant per-

formed one adaptation run for each combination of force-field direc-

tion (leftward versus rightward), perturbed hand (left versus right),

and condition (one cursor versus two cursor). The sequence of

runs was randomly determined for each participant and distributed

across two 1 hr sessions, separated by at least 1 day.

Data Analysis

The initial direction error (y) error of each movement was defined as

the angular deviation from a straight-ahead movement at 160 ms

after the movement start. The online correction (c) was the differ-

ence between the direction of the overall movement and the initial

movement direction. The correction rates, the proportion of error

corrected by each hand, were calculated with a linear regression

model of the online correction of the left and right hands as a function

of the initial direction error of each hand in that trial:�
cL

cR

�
n

=

�
CL CLR

CRL CR

��
yL

yR

�
n

: (3)

CLand CRare the within-hand correction rates, and CLRand CRLare

the between-hand correction rates.

In experiment 1, random force-field perturbations were applied.

To model trial-by-trial adaptation, I used a state-space approach

[11], in which the initial direction of the left and the right hand (y)
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Figure 3. Endpoint Correlation in Unperturbed Movements

(A) Predicted endpoint correlation in the x direction in the two- (blue) and one- (red) cursor condition, with the same simulation parameters as in

Figure 1.

(B) Predicted time course of the correlation between movement directions.

(C) Endpoint correlation of one representative participant in experiment 1.

(D) Time course of correlation, averaged across all participants of experiment 1, with the shaded area indicating the SEM.
was expressed as a function of the force applied to the hand (a) and

the internal state of the system (z),�
yL

yR

�
n

=

�
DL 0
0 DR

��
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n

2

�
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�
n
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in which DLand DR relate to the stiffness of the left and right arm.

Learning was modeled as a change in internal state from trial n to

trial n + 1 as a function of the initial direction error in trial n,�
zL

zR

�
n + 1

=

�
zL

zR

�
n

+

�
BL BLR

BRL BR

��
yL

yR

�
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in which BLand BR are the within-hand adaptation rates, and BLR and

BRL are the between-hand adaptation rates. For each participant

and condition, the maximum-likelihood estimates of the parameters

were found by the minimization of the sum of squares between

observed and predicted initial direction errors. I estimated separate

B parameters depending on whether trial n had visual feedback.

Optimal Control Simulations

So that the predictions of optimal feedback control could be calcu-

lated, a biologically inspired model of a two-degree-of-freedom arm

[4] was used. Most parameters were kept identical to previous work

[12]. For simplicity, I used a local linear approximation of the system

in Euclidian coordinates. However, very similar results can be ob-

tained with a nonlinear, joint-based model, by using iterative tech-

niques to derive the optimal control policy [13]. In our model, each

hand is conceptualized by a state vector that contains the x and y

component in Euclidian coordinates of position (p), velocity (v), force

(f), muscle activation (h), and target position (g). The kinematics are

modeled with

pt + 1 = pt + Dtvt

vt + 1 = vt + Dtft
I

; (6)

in which Dt is the size of the discrete time step in ms, t is the number

of time steps, and I is the inertia of the arm at the endpoint (0.5kg). A
stiffness term was added in the x direction for the perturbed hand

and fitted to the response of the perturbed hand to the force-field

perturbation in the two-cursor condition, resulting in an estimate

of 129.9 N/m. I simulated the delay in the muscles by using two-

coupled first-order low-pass filters with time constants t1 = t2 =

40 ms. Therefore, force (f) was a low-pass-filtered version of the

motor command u:

ft + 1 = ft + Dt=t2ðht 2 ftÞ
ht + 1 = ht + Dt=t1ðut 2 htÞ

: (7)

To simulate sensory delay, I expanded the state space with a se-

ries of four-coupled first-order filters for the sensed position, veloc-

ity, and force:

xðjÞt + 1 = xðjÞt + Dt=ts

�
xðj 2 1Þ

t 2 xðjÞt

�
;with j = 1;.; 4: (8)

The current state of the system is xð1Þ, and the state that can be

sensed is xð4Þ, in which x is used as a placeholder for p, v, or f. The

time constant for each filter was ts = 15 ms. In summary, the state

vector for each hand is

xt =
�

pð1Þt vð1Þt f ð1Þt ht g pð2Þt vð2Þt f ð2Þt ::: pð4Þt vð4Þt f ð4Þt

�T
;

(9)and the sensed state is

yt =
�

p
ð4Þ
t v

ð4Þ
t f

ð4Þ
t

�
: (10)

By defining the appropriate matrices, whole time-discrete system

can be written as �
xL

xR

�
t + 1

= A

�
xL

xR

�
t

+ B

�
uL

uR

�
�

yL

yR

�
t + 1

= H

�
xL

xR

�
t

: (11)

It is important to note that A, B, and H are block diagonal; i.e., in

the system dynamics, the left hand has no influence on the right

and vice versa.
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The position and velocity term in the cost function of the two-cursor

reaching (Equation 1) increased exponentially during the movement

up to the maximal movement time (900 ms), with time constant of

tcost = 51 ms:

wp;t = cpexp
�

2 ðMT 2 tDtÞ
tcost

�
wv;t = cvexp

�
2 ðMT 2 tDtÞ

tcost

� : (12)

An exponential increase in goal cost allows us to treat the move-

ment time as a soft rather than a hard constraint for human move-

ment production [14]. cpand cvwere chosen such that the sum of

the respective weights over the whole movement were 40 1/m2

and 5 s2/m2. The weight for the control cost summed to 5*10e-5

over 1 s. The parameters of the cost function were estimated to pro-

vide the best fit to the velocity profile of unperturbed movements.

For the one-cursor task, I used the same cost function but replaced

the position term with a common term (Equation 2).

By using the cost function, I calculated the optimal control gains Lt

with the Riccati equations (see the Supplemental Data available on-

line) [15]. The control gains allow us to compute the optimal motor

commands given an estimate of the current state, ut = 2 Ltbxt. For

the two-cursor task, all Lt are block-diagonal matrices; i.e., control

of the two hands is independent. For the one-cursor task, the opti-

mal control gains Lt have nonzero off-diagonal entries; i.e., control

of the left hand depends on the estimated state of the right hand

and vice versa.

For the simulations in Figure 1, the system was perturbed with the

force fields from experiment 1. No noise was added to the motor out-

put, and sensory noise was assumed to be of the same size as used

in [12]. For the simulations in Figure 3, I used the same system and

control policies as in Figure 1, but I added signal-dependent noise

to the control commands in vector u [12]. The standard deviation

of the noise depended linearly on the size of control signal. Because

the simulation was Euclidian rather than in joint space, the noise in

each direction was made dependent on linear combination of the

motor commands in the x and y directions, such that the resulting

Figure 4. Experiment 2 Shows Bilateral Adaptation to a Constant

Force Field in the One-Cursor Condition

The initial direction error of the perturbed hand (A) and unperturbed

hand (B) in normal (solid line) and catch (dashed line) trials. Results

are averaged across participants, hands, and force fields. Error bars

indicate the between-subject standard error of the mean (SEM).
spatial noise variances within each hand in the two-cursor condition

were matched to the experimental data. With these parameters, I

then simulated the one-cursor condition. A more detailed descrip-

tion of the model, and an implementation in Matlab (Natick, MA), is

provided in the Supplemental Data.

Supplemental Data

Experimental Procedures, three figures, and a Matlab implementa-

tion are available at http://www.current-biology.com/cgi/content/

full/17/19/1675/DC1/.
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