
Homework 4 

Background:
Listen to the two first lectures of the Multivariate analysis section: Classification and 
Spatial prewhitening. 

Data homework:
The data set comes from the same experiment as the data set for homework 1 and 2. The 
data contains time series from 328 voxels from the right primary motor cortex from one 
subject that moved one finger at a time for 8.1s. Each of the 10 fingers was repeated 3 
times per run, and 8 runs (each containing 123 images) were collected. Each image took 
2.7s took acquire. The details of the methods can be found in (Diedrichsen et al., 2013, 
Ejaz et al., 2015). The file  dataset_4.mat contains the following variables: 

Y 984x328 Time time-series data (984 measurement points) from 328 
voxels from right motor cortex. 

XYZ 328 x 3 Location of the 328 voxels in x,y,z space in mm.
Xtask 123x10x8 The task-based regressors for Left and Right 

fingers. The first 5 columns are for D1-D5 of the left hand, 
column 6-10 are for D6-D10 of the right hand. Each trial is 

already convolved with the hemodynamic response function. 
Xintercept 123x1x8 Intercepts for the runs 
Xhpf 123x5x8 High-pass filter regressors for each run 
run 984x1 indicator which run the time point belongs to. 

1. Implement a nearest-neighbor classifier to distinguish between the 5 fingers of 
the left hand 

a. Estimate the beta-weights for the 10 fingers. Before estimating the betas, remove the 
low frequency trends with the high-pass filter regressors, as done for homework 2.2 
(see model answer in doubt). 

b. Classify between the five fingers of the contralateral, left hand (first 5 rows). Implement 
a  multi-class leave-one-out cross validated classifier as an independent function. The 
function should take the beta estimates for the left hand fingers for all voxels and runs 
as an input. It should then loop over all runs, each time using that run as a test set and 
the remaining runs as a training set. You then estimate the mean patterns for the 5 
fingers across the 7 runs of the training set (� ) and then classify the 5 patterns of the 
left-out run depending on which one of the patterns from the training data set they are 
closest to. Perform these classification independent of each other (that is sometimes 2 
or 3 patterns may be classified as “thumb”). Use the Euclidean distance: If x is the test 
pattern, and  are the training pattern for the ith finger, then assign x to the finger for 
which �  minimal. The function should return the percentage 
accuracy. Overall you made 8*5 = 40 classifications. Report that classification 
accuracy.  What is guessing baseline (random chance)? 

c. Repeat the procedure for the 5 fingers of the ipsilateral, right hand. What do you find?  
2. Derive a significance value from a randomization test 
For each hand, repeat the classification procedure 1000 times, each time shuffling the 
patterns in each run independently. This simulates the null-hypothesis that for this region 
and this subject, there are no differences between patterns associated with the fingers. 
Call your classification routine with this shuffled data - building up a Null-distribution for 
classification accuracy. Is the classification for left and right hand significant? What is the 
p-value based on your null-distribution? 
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Advanced question: Why can we not approximate the distribution of number of correct 
classifications as a binomial distribution with p=1/5 and N = number(Conditions) * 
number(Runs)? 

3. Prewhiten the data spatially using the residuals from 1-level regression 
a. During the estimation of the betas, calculate the residuals time-series for each run and 

voxel. Estimate the voxel-by-voxel covariance matrix for each run (this should be a 328 
x 328 matrix). Plot the co-variance matrix (or better the correlation matrix) for each run 
and compare them visually. 

b. Calculate the average covariance matrix across runs (� ) and regularize it by using a 
combination of a the diagonal version of this matrix (preserve the diagonal values, but 
set all off-diagonals to 0), and the original version of the matrix. 
� . Prewhiten the estimated beta weights from all runs using this 
matrix. If the matrix of the task-related beta weights B for a run is a 10x328 matrix, and 
�  is your regularized 328x328 covariance matrix, you can prewhiten the data by 
calculating:  
�   
Repeat the classification algorithm from (1) using prewhitened data and also redo and 
report the randomization. What do you observe? 
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