
Homework 5 

1. Why is the simple Euclidean distance on noisy data a biased estimate of the true 
distance between two activity patterns? 

A squared Euclidean distance is the inner product of the two difference vectors between 
the estimated activity patterns. As the vectors are noise, the expected value of a squared 
Euclidean distance is the true distance plus the expected value of the sums of squares of 
the random noise. 

2.   Do pair-wise classification between activity patterns using the provided pre-
whitened estimates. That is, you need to do 10 total classifications, each finger 
against each finger. Report the average classification accuracies for each pair. 
Visualize the dissimilarity measure (% accuracy) in a 5x5 Representational 
Dissimilarity Matrix (RDM).  

The pairwise average classification accuracies for each pair are: 
 0.9271    0.9896    0.9896    1.0000    0.8958    0.9635    0.9792    0.7448    0.9271    
0.7708

The RDM is given in Figure 1a. 

�
Figure 1. Representational dissimilarity matrices for (A) classification accuracy (B) 
Mahalanobis distance (i.e. Euclidean distance on prewhitened data) and (C) 
crossvalidated distance. 

3. Average the activity pattern for each finger across runs. Calculate the 10 pairwise
squared Euclidean distances between the mean activity patterns. Again, show your
results using an RDM.
MATLAB Tip: The functions pdist and squareform can make your life much easier.
In a scatterplot, plot the squared Euclidean distances against % accuracy. Use 
different colours / symbols for the different subjects. What do you observe? 

The 10 pairwise distances are 
193.1167  303.6884  335.2598  290.2224  138.8106  192.4017  218.0015  110.7478  
151.4682  119.6969

accuracy

1 2 3 4 5

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1
distance

1 2 3 4 5

1

2

3

4

5
0

50

100

150

200

250

300

crossval distance

1 2 3 4 5

1

2

3

4

5
0

50

100

150

200



Distances are reported in Figure 1b. 

�
Figure 2. Squared Euclidean distances (x-axis) plotted against classification accuracy (y-
axis). 
We observe only a moderate  relationship between distances between distances and 
accuracies. Classification accuracies saturate at 1 (100%). Also there are some subjects 
(blue) with very large distances (>200), but many of the classification accuracies are not 
very high.  

4. Calculate the cross-validated squared Euclidean distance between each of the 10 
finger pairs. Report your results in form of a RDM matrix. In a scatterplot, plot the 
cross validated squared Euclidean distances against the squared Euclidean 
distance. Use different colours / symbols for the different subjects. What do you 
 observe?

The code for calculating the cv distances is given by: 

function ldc=crossval_dist(data);
nPart = size(data,3);  % Partitions are the 3 dimension
nVox  = size(data,2);  % Number of voxels 
nCond = size (data,1); % Number of conditons (should be 2) 
part = [1:nPart];
for n=1:nPart
    trainIndx = find(part~=n);
    testIndx =  find(part==n);
    Mu_hat = mean(data(:,:,trainIndx),3); % Calculate means 
    ldc(n)=diff(Mu_hat,1,1)*diff(data(:,:,testIndx),1,1)'; 
end;
ldc=mean(ldc); 
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The mean cross validated distances are 
101.9622  203.1120  227.0220  190.8586   51.4064   98.5119  126.0337   27.0826   
65.0024   32.4206

And they are reported as an RDM in Figure 1c. 

�
Figure 3: Accuracy against crossvalidated distance (LDC) against the normal distance. 

The relationship within each subject between cv and normal distance is close to linear. 
However, in general the normal distance is the cv distance plus a constant (for most 
subjects ~50). For some subjects this constant is much higher (100-250). The constant 
offset is likely caused by the different noise level across subjects. 

5. How stable is the RDM estimate across subjects? Calculate the correlation 
between the the vectors of 10 dissimilarities (%accuracies, sq. distance, sq. cross 
validated distance) for each pair of subjects. Report the average inter-subject 
correlation for each measure. Which measure yields the highest average 
correlation?

The average inter subject correlations across the 10 dissimilarities are: 
accuracy :  0.717 
normal dist :  0.888  
crossval dist  : 0.893
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Thus, there is a big jump from classification accuracies to continuous distances, but not 
much improvement through crossvalidation. 
In absence of knowing the ground truth - inter-subject correlation can serve as a proxy 
measure for the quality of the measure. 

Overall code: 

function varargout = homework5(what,varargin)
% Example matlab script to solve homework5
%
%
run=[]; % Run is a variable
switch(what)
    case 'calculate_distances'
        % Calculate the three different distance measures 
        load('dataset_5.mat'); 
        data = CONTRA; 
            
        % Get the pairwise classification accuracies
        for s=1:length(data)
            n=1; 
            for a=1:5
                for b=a+1:5
                    T.acc(s,n)  = nn_classifier(data{s}([a b],:,:));
                    T.dist(s,n) = pdist(mean(data{s}([a b],:,:),3)).^2; 
                    T.ldc(s,n)  = crossval_dist(data{s}([a b],:,:)); 
                    n=n+1; 
                end;
            end;
        end; 
        
        % Image scale the mean distances 
        figure(1); 
        subplot(2,2,1); 
        imagesc(squareform(mean(T.acc))); colorbar; 
        title('accuracy'); 
        subplot(2,2,2); 
        imagesc(squareform(mean(T.dist))); colorbar; 
        title('distance'); 
        subplot(2,2,3); 
        imagesc(squareform(mean(T.ldc))); colorbar; 
        title('crossval distance'); 
        
        
        % Plot the different measures against each other: 
        color = {'ro','rs','bo','bs','go','gs','ko','ks','co','cs','mo','ms'}; 

        for s=1:12 
            figure(2); 
            plot(T.dist(s,:)',T.acc(s,:)',color{s}); 
            hold on; 
            figure(3); 
            plot(T.ldc(s,:)',T.dist(s,:)',color{s}); 
            hold on; 
        end; 
        figure(2); 



        xlabel('sq. distance'); 
        ylabel('classification accuracy'); 
        drawline(0,'dir','horz'); 
        drawline(0.5); 
        hold off; 
        
        figure(3); 
        xlabel('crossval distance'); 
        ylabel('distance'); 
        drawline(0,'dir','horz'); 
        drawline(0); 
        hold off; 
        
        varargout={T}; 
    case 'consistency' 
        T=homework5('calculate_distances');
        R1=triu(corr(T.acc'),1); 
        R1(R1==0)=NaN; 
        R2=triu(corr(T.dist'),1); 
        R2(R2==0)=NaN; 
        R3=triu(corr(T.ldc'),1); 
        R3(R3==0)=NaN; 
        fprintf('consistency acc:%2.3f dist:%2.3f  ldc:%2.3f
\n',nanmean(R1(:)),nanmean(R2(:)),nanmean(R3(:))); 

end;

function acc=nn_classifier(data);
nPart = size(data,3);  % Partitions are the 3 dimension
nVox  = size(data,2); 
nCond = size (data,1); % Number of conditons
part = [1:nPart];
for n=1:nPart
    trainIndx = find(part~=n);
    testIndx =  find(part==n);
    Mu_hat = mean(data(:,:,trainIndx),3); % Calculate the training means
    % Now classify
    for c=1:nCond
        x = data(c,:,testIndx);  % This is the test pattern
        dist=x*x'-2*Mu_hat*x'+sum(Mu_hat.^2,2);
        [~,k(c,n)]=min(dist);  % Record the classification
    end;
end;
% Caluclate the % correct
correct=bsxfun(@eq,k,[1:nCond]');
acc = sum(correct(:))/numel(correct(:));

function ldc=crossval_dist(data);
nPart = size(data,3);  % Partitions are the 3 dimension
nVox  = size(data,2);  % Number of voxels 
nCond = size (data,1); % Number of conditons (should be 2) 
part = [1:nPart];
for n=1:nPart
    trainIndx = find(part~=n);
    testIndx =  find(part==n);
    Mu_hat = mean(data(:,:,trainIndx),3); % Calculate means 
    ldc(n)=diff(Mu_hat,1,1)*diff(data(:,:,testIndx),1,1)'; 
end;
ldc=mean(ldc); 


