
Homework 5

1. Why is the simple Euclidean distance on noisy data a biased estimate of the true
distance between two activity patterns?

A squared Euclidean distance is the inner product of the two difference vectors between
the estimated activity patterns. As the vectors are noise, the expected value of a squared
Euclidean distance is the true distance plus the expected value of the sums of squares of
the random noise.

2. Do pair-wise classification between activity patterns using the provided pre-
whitened estimates. That is, you need to do 10 total classifications, each finger
against each finger. Report the average classification accuracies for each pair.
Visualize the dissimilarity measure (% accuracy) in a 5x5 Representational
Dissimilarity Matrix (RDM).

The pairwise average classification accuracies for each pair are:
 0.9271 0.9896 0.9896 1.0000 0.8958 0.9635 0.9792 0.7448 0.9271
0.7708

The RDM is given in Figure 1a.

�
Figure 1. Representational dissimilarity matrices for (A) classification accuracy (B)
Mahalanobis distance (i.e. Euclidean distance on prewhitened data) and (C)
crossvalidated distance.

3. Average the activity pattern for each finger across runs. Calculate the 10 pairwise
squared Euclidean distances between the mean activity patterns. Again, show your
results using an RDM.
MATLAB Tip: The functions pdist and squareform can make your life much easier.
In a scatterplot, plot the squared Euclidean distances against % accuracy. Use
different colours / symbols for the different subjects. What do you observe?

The 10 pairwise distances are
193.1167 303.6884 335.2598 290.2224 138.8106 192.4017 218.0015 110.7478
151.4682 119.6969

accuracy

1 2 3 4 5

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1
distance

1 2 3 4 5

1

2

3

4

5
0

50

100

150

200

250

300

crossval distance

1 2 3 4 5

1

2

3

4

5
0

50

100

150

200

Distances are reported in Figure 1b.

�
Figure 2. Squared Euclidean distances (x-axis) plotted against classification accuracy (y-
axis).
We observe only a moderate relationship between distances between distances and
accuracies. Classification accuracies saturate at 1 (100%). Also there are some subjects
(blue) with very large distances (>200), but many of the classification accuracies are not
very high.

4. Calculate the cross-validated squared Euclidean distance between each of the 10
finger pairs. Report your results in form of a RDM matrix. In a scatterplot, plot the
cross validated squared Euclidean distances against the squared Euclidean
distance. Use different colours / symbols for the different subjects. What do you
 observe?

The code for calculating the cv distances is given by:

function ldc=crossval_dist(data);
nPart = size(data,3); % Partitions are the 3 dimension
nVox = size(data,2); % Number of voxels
nCond = size (data,1); % Number of conditons (should be 2)
part = [1:nPart];
for n=1:nPart
 trainIndx = find(part~=n);
 testIndx = find(part==n);
 Mu_hat = mean(data(:,:,trainIndx),3); % Calculate means
 ldc(n)=diff(Mu_hat,1,1)*diff(data(:,:,testIndx),1,1)';
end;
ldc=mean(ldc);

0 200 400 600 800
sq. distance

0

0.2

0.4

0.6

0.8

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

The mean cross validated distances are
101.9622 203.1120 227.0220 190.8586 51.4064 98.5119 126.0337 27.0826
65.0024 32.4206

And they are reported as an RDM in Figure 1c.

�
Figure 3: Accuracy against crossvalidated distance (LDC) against the normal distance.

The relationship within each subject between cv and normal distance is close to linear.
However, in general the normal distance is the cv distance plus a constant (for most
subjects ~50). For some subjects this constant is much higher (100-250). The constant
offset is likely caused by the different noise level across subjects.

5. How stable is the RDM estimate across subjects? Calculate the correlation
between the the vectors of 10 dissimilarities (%accuracies, sq. distance, sq. cross
validated distance) for each pair of subjects. Report the average inter-subject
correlation for each measure. Which measure yields the highest average
correlation?

The average inter subject correlations across the 10 dissimilarities are:
accuracy : 0.717
normal dist : 0.888
crossval dist : 0.893

0 50 100 150 200 250 300 350 400
crossval distance

0

100

200

300

400

500

600

700

800

di
st

an
ce

Thus, there is a big jump from classification accuracies to continuous distances, but not
much improvement through crossvalidation.
In absence of knowing the ground truth - inter-subject correlation can serve as a proxy
measure for the quality of the measure.

Overall code:

function varargout = homework5(what,varargin)
% Example matlab script to solve homework5
%
%
run=[]; % Run is a variable
switch(what)
 case 'calculate_distances'
 % Calculate the three different distance measures
 load('dataset_5.mat');
 data = CONTRA;

 % Get the pairwise classification accuracies
 for s=1:length(data)
 n=1;
 for a=1:5
 for b=a+1:5
 T.acc(s,n) = nn_classifier(data{s}([a b],:,:));
 T.dist(s,n) = pdist(mean(data{s}([a b],:,:),3)).^2;
 T.ldc(s,n) = crossval_dist(data{s}([a b],:,:));
 n=n+1;
 end;
 end;
 end;

 % Image scale the mean distances
 figure(1);
 subplot(2,2,1);
 imagesc(squareform(mean(T.acc))); colorbar;
 title('accuracy');
 subplot(2,2,2);
 imagesc(squareform(mean(T.dist))); colorbar;
 title('distance');
 subplot(2,2,3);
 imagesc(squareform(mean(T.ldc))); colorbar;
 title('crossval distance');

 % Plot the different measures against each other:
 color = {'ro','rs','bo','bs','go','gs','ko','ks','co','cs','mo','ms'};

 for s=1:12
 figure(2);
 plot(T.dist(s,:)',T.acc(s,:)',color{s});
 hold on;
 figure(3);
 plot(T.ldc(s,:)',T.dist(s,:)',color{s});
 hold on;
 end;
 figure(2);

 xlabel('sq. distance');
 ylabel('classification accuracy');
 drawline(0,'dir','horz');
 drawline(0.5);
 hold off;

 figure(3);
 xlabel('crossval distance');
 ylabel('distance');
 drawline(0,'dir','horz');
 drawline(0);
 hold off;

 varargout={T};
 case 'consistency'
 T=homework5('calculate_distances');
 R1=triu(corr(T.acc'),1);
 R1(R1==0)=NaN;
 R2=triu(corr(T.dist'),1);
 R2(R2==0)=NaN;
 R3=triu(corr(T.ldc'),1);
 R3(R3==0)=NaN;
 fprintf('consistency acc:%2.3f dist:%2.3f ldc:%2.3f
\n',nanmean(R1(:)),nanmean(R2(:)),nanmean(R3(:)));

end;

function acc=nn_classifier(data);
nPart = size(data,3); % Partitions are the 3 dimension
nVox = size(data,2);
nCond = size (data,1); % Number of conditons
part = [1:nPart];
for n=1:nPart
 trainIndx = find(part~=n);
 testIndx = find(part==n);
 Mu_hat = mean(data(:,:,trainIndx),3); % Calculate the training means
 % Now classify
 for c=1:nCond
 x = data(c,:,testIndx); % This is the test pattern
 dist=x*x'-2*Mu_hat*x'+sum(Mu_hat.^2,2);
 [~,k(c,n)]=min(dist); % Record the classification
 end;
end;
% Caluclate the % correct
correct=bsxfun(@eq,k,[1:nCond]');
acc = sum(correct(:))/numel(correct(:));

function ldc=crossval_dist(data);
nPart = size(data,3); % Partitions are the 3 dimension
nVox = size(data,2); % Number of voxels
nCond = size (data,1); % Number of conditons (should be 2)
part = [1:nPart];
for n=1:nPart
 trainIndx = find(part~=n);
 testIndx = find(part==n);
 Mu_hat = mean(data(:,:,trainIndx),3); % Calculate means
 ldc(n)=diff(Mu_hat,1,1)*diff(data(:,:,testIndx),1,1)';
end;
ldc=mean(ldc);

