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How is the primary motor cortex (M1) organized to control fine finger movements? We investigated the population activity
in M1 for single finger flexion and extension, using 7T functional magnetic resonance imaging (fMRI) in female and male
human participants and compared these results to the neural spiking patterns recorded in two male monkeys performing the
identical task. fMRI activity patterns were distinct for movements of different fingers, but were quite similar for flexion and
extension of the same finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and directions,
which is similar to what was found for muscular activity patterns. The discrepancy between fMRI and electrophysiological
measurements can be explained by two (non-mutually exclusive) characteristics of the organization of finger flexion and
extension movements. Given that fMRI reflects predominantly input and recurrent activity, the results can be explained by
an architecture in which neural populations that control flexion or extension of the same finger produce distinct outputs, but
interact tightly with each other and receive similar inputs. Additionally, neurons tuned to different movement directions for
the same finger (or combination of fingers) may cluster closely together, while neurons that control different finger combina-
tions may be more spatially separated. When measuring this organization with fMRI at a coarse spatial scale, the activity pat-
terns for flexion and extension of the same finger would appear very similar. Overall, we suggest that the discrepancy
between fMRI and electrophysiological measurements provides new insights into the general organization of fine finger move-
ments in M1.
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Significance Statement

The primary motor cortex (M1) is important for producing individuated finger movements. Recent evidence shows that
movements that commonly co-occur are associated with more similar activity patterns in M1. Flexion and extension of the
same finger, which never co-occur, should therefore be associated with distinct representations. However, using carefully con-
trolled experiments and multivariate analyses, we demonstrate that human fMRI activity patterns for flexion or extension of
the same finger are highly similar. In contrast, spiking patterns measured in monkey M1 are clearly distinct. This suggests
that populations controlling opposite movements of the same finger, while producing distinct outputs, may cluster together
and share inputs and local processing. These results provide testable hypotheses about the organization of hand control
in M1.
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Introduction
Dexterous movements of fingers require accurate coordination
of different hand muscles. Hand muscles are innervated by
motor neurons in the ventral horn of the spinal cord, which
receive direct and indirect projections from the hand region of
the contralateral primary motor cortex (M1; Lemon, 2008). In
monkey species capable of better finger individuation, direct
(monosynaptic) projections fromM1 to ventral horn motor neu-
rons are more pronounced (Heffner and Masterton, 1983;
Bortoff and Strick, 1993). Lesions to the corticospinal tract
(Tower, 1940; Lawrence and Kuypers, 1968; Lawrence and
Hopkins, 1976; Sasaki et al., 2004) or to M1 (permanent: Liu
and Rouiller, 1999; Darling et al., 2009; reversible: Schieber and
Poliakov, 1998) result in a significant loss of finger individuation.
Such symptoms are also reported in human stroke patients who
have damage to the hand area of M1 or the descending cortico-
spinal pathway (Lang and Schieber, 2003; Xu et al., 2017). These
results indicate that M1 is important for the fine control of indi-
viduated finger movements.

What is less well understood is how this cortical control mod-
ule for finger movements is organized. Here, we studied this
question by investigating cortical activation patterns evoked dur-
ing flexion and extension of individual fingers. Previous electro-
physiological work in macaque monkeys (Schieber and Hibbard,
1993; Schieber and Poliakov, 1998) has indicated that motor
cortical neurons have complex tuning functions, often respond-
ing to movements of multiple fingers and to both flexion and
extension movements. Therefore, there exists no clearly organ-
ized “map,” with separate regions dedicated to the control of a
single finger. Instead, the population of M1 neurons involved in
hand control must be organized by some other principle.

One plausible principle is that the statistics of natural hand
use shapes the organization of neuronal populations in the hand
region of M1. This idea predicts that movements that commonly
co-occur in everyday life are represented in overlapping sub-
strates in M1 (Graziano and Aflalo, 2007). In humans, fingers
with high correlations between their joint-angle velocities during
everyday hand movements (Ingram et al., 2008) have been
shown to have more similar M1 activity patterns, as measured
with functional magnetic resonance imaging (fMRI; Ejaz et al.,
2015). The correlation structure of everyday finger movements
nearly fully explained the relative similarities of M1 finger activ-
ity patterns and fit the data better than a model that used the
similarity of the required muscle activity patterns (i.e., predicting
that movements that use similar muscles also have similar activ-
ity patterns) or a somatotopic model (i.e., predicting that fingers
are represented in an orderly finger map).

In this paper, we asked to what degree this kinematic hypoth-
esis could generalize to movements of the same finger in differ-
ent directions. We measured the activity evoked in the hand area
of M1 using high-field fMRI while human participants per-
formed near-isometric single finger flexion and extension presses
with their right hand. By extrapolating the model used in the
study by Ejaz et al. (2015) to this situation, we predicted that
each movement should have its own, clearly separated represen-
tation in M1, as flexion and extension movements of the same
finger can never co-occur. Indeed, it has been recently suggested
that human motor cortex has multiple representations of each
finger, one dedicated to flexion and one to extension (Huber et
al., 2020).

We found, however, that the measured M1 fMRI patterns for
flexion and extension of the same finger were strikingly similar,
much more similar than would be expected for two movements

that cannot co-occur. This similarity was not the result of cocon-
traction during the task. To better understand these results, we
investigated the representational structure of single-neuron ac-
tivity in M1 of two macaque monkeys trained on the same flex-
ion–extension task (Schieber and Rivlis, 2005, 2007). The spiking
patterns in monkeys were quite distinct for fingers and direc-
tions. From these results, we propose two, non-mutually exclu-
sive hypotheses about the organization of finger movement
representations in the primary motor cortex.

Materials and Methods
Human participants
Nine healthy participants were recruited for the study (five males and
four females; mean age, 24.78 years; SD, 4.68; mean Edinburgh handed-
ness score, 90.11; SD, 11.34). Participants completed three experimental
sessions. During the first training session, participants learned to per-
form the finger individuation task. In the scanner session, participants
performed the finger individuation task while undergoing fMRI. In the
electromyography (EMG) session, participants performed the finger
individuation task while muscle activities were recorded. All participants
provided informed consent before the beginning of the study, and all
procedures were approved by the Office for Research and Ethics at
Western University.

Experimental design of human finger individuation task
In all three sessions (training, scanning, and EMG), the five fingers of
the right hand were individually clamped between two keys (Fig. 1A).
Foam padding on each key ensured that each finger was comfortably
restrained. Force transducers (dynamic range, 0–16 N; resolution,,0.02
N, sampling rate, 200 Hz; FS series, Honeywell) above and below each
key monitored the forces applied by each finger in the extension and
flexion directions.

During the task, participants viewed a screen that presented two
rows of five bars (Fig. 1B). These bars corresponded to flexion or exten-
sion direction for each of the five fingers of the right hand. The forces
applied by each finger were indicated on the visual display as five solid
white lines (one per finger). On each trial, participants were cued to
make an isometric, single finger flexion or extension press at one of three
forces levels (1, 1.5, or 2 N for extension; 1.5, 2, or 2.5 N for flexion)
through the display of a white target box (Fig. 1B). Extension forces were
chosen to be lower than flexion forces, as extension finger presses are
more difficult (Valero-Cuevas et al., 1998; Li et al., 2003) and can lead to
more enslaving (i.e., coarticulation) of noninstructed fingers (Yu et al.,
2010). This design yielded two levels of matched target forces for flexion
and extension presses (1.5 and 2 N). The forces were similar to the low
forces required in the monkey task design. The finger displacement
required to achieve these force thresholds was minimal, such that the
finger presses were close to isometric.

Each trial lasted 6000ms and consisted of the following four phases
(Fig. 1B): a cue phase (1500ms), a press phase (2000ms), a hold phase
(1000ms), and a 1500ms intertrial interval. This trial structure was
designed to mirror the nonhuman primate (NHP) task (see NHP meth-
ods). During the cue phase, a white box appeared in 1 of the 10 finger
bars presented on screen, indicating the desired finger and direction.
The desired pressing force was reflected by the relative location of the
cue within the finger bar. After 1500ms, the cue turned green. This
instructed the participant to initiate the finger press. Participants had up
to 2000ms after the cue turned green to reach the specified force. Once
the pressing force was within the target box (target force, 612.5%), the
cue turned blue. Participants were trained to hold the force constant
within this interval for 1000ms. When this time had elapsed, the cue dis-
appeared and the participants were instructed to release the press by
relaxing their hand. Importantly, participants were instructed not to
actively move the finger in the opposite direction. A new trial started ev-
ery 6 s. For the scanning session, periods of rest were randomly inter-
mixed between trials (see below). The muscle recording sessions lacked
these rest periods, but otherwise had the same trial structure.
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Trials of the 30 conditions (five fingers
� two directions � three forces) were pre-
sented in a pseudorandom order. Trials
were marked as errors if the participant
was too slow (i.e., did not initiate move-
ment within 2000ms of the go-cue),
pressed the wrong finger or in the wrong
direction, or if the participant did not reach
at least 0.5 N force with the cued finger in
the cued direction. Because of the pretrain-
ing, the participants had low error rates in
both the fMRI (mean 6 SEM error rate
across conditions, 1.48 61.05%) and EMG
(mean 6 SEM error rate across con-
ditions, 1.30% 6 0.97%) sessions, and
accurately produced the required target
forces (fMRI: mean peak force accu-
racy, 108.93 6 2.56% of the target forces;
EMG: mean accuracy, 107.80 6 2.19%).
Therefore, we included all trials in subse-
quent analyses.

We also did not exclude any trials based
on finger coactivation. Overall, participants
were able to individuate their fingers rela-
tively well. During fMRI extension trials,
the forces applied through the nonin-
structed fingers were, on average, 14.01 6
1.41% of the forces applied by the
instructed finger. During fMRI flexion,
forces produced by noninstructed fingers
were 20.51 6 1.49% of the force produced
by the instructed finger. Most enslaving
occurred during presses of the middle,
fourth, and little fingers, all of which are
difficult to individuate (Schieber, 1991).
Note, however, that the presence of enslav-
ing does not compromise the main finding
of our study. To some degree, neural activ-
ity patterns related to flexion and extension
of single fingers will always depend on the
biomechanical coupling between fingers,
either because the cortical activation pat-
terns need to overcome that coupling or
because coupling does occur, which then influences the recurrent sen-
sory input. Our main conclusions are based on comparisons between
flexion and extension presses, and remain valid whether we study the
actions of isolated fingers, or groups of fingers (see Discussion).

fMRI acquisition and analysis
Image acquisition. We used high-field fMRI [7T Magnetom Scanner

with a 32-channel head coil, Siemens (used at Western University)] to
measure the blood oxygenation level-dependent (BOLD) responses in
human participants. For each participant, evoked BOLD responses were
measured for isometric single finger presses in the flexion and extension
directions.

There were two repeats of each condition during each imaging run
(five fingers � two directions� three force levels� two repeats = 60 tri-
als). The trial order in each run was randomized. In addition, five
rest conditions of 6000ms were randomly interspersed between trials
within each run. Each run lasted ;390 s. Participants performed eight
such runs during the scanning session.

During each run, 270 functional images were obtained using a multi-
band 2D echoplanar imaging sequence [GRAPPA (generalized autocali-
brating partial parallel acquisition); in-plane acceleration factor, 2;
multiband factor 2; repetition time (TR), 1500ms, echo time, 20 ms; flip
angle, 45°]. Per image, we acquired 32 interleaved slices (without gap)
with an isotropic voxel size of 1.5 mm. The first two images in the
sequence were discarded to allow magnetization to reach equilibrium.
To estimate magnetic field inhomogeneities, we acquired a gradient echo

field map at the end of the scanning session. Finally, a T1-weighted ana-
tomic scan was obtained using anMPRAGE (magnetization-prepared rapid
gradient echo sequence) with a voxel size of 0.75 mm isotropic (3D gradient
echo sequence; TR, 6000 ms; 208 volumes).

Image preprocessing and first-level analysis. Functional images were
first realigned to correct for head motion during the scanning session
(three translations: x, y, z; three rotations: pitch, roll, yaw), and coregis-
tered to each participant’s anatomic T1-weighted image. Within this
process, we used a B0 fieldmap to correct for image distortions arising
from magnetic field inhomogeneities (Hutton et al., 2002). Because of
the relatively short TR (1.5 s), no slice-timing correction was applied.
Nor were the data spatially smoothed or normalized to a standard
template.

The minimally preprocessed data were then analyzed using a general
linear model (GLM; Friston et al., 1994) using SPM12 (https://www.fil.
ion.ucl.ac.uk/spm/). Each of the finger-direction-force conditions was
modeled with separate regressors per run, resulting in 30 regressors per
run (30 � 8 runs = 320 task regressors), along with an intercept for each
run. The regressor was a boxcar function that started at the presentation
of the go-cue and lasted for the trial duration, spanning the press, hold,
and release periods of each trial. The boxcar functions were convolved
with a hemodynamic response function with a delayed onset of 1000ms
and a poststimulus undershoot at 7500ms. Given the low error rate, we
did not exclude any trials from this analysis. To model the long-range
temporal autocorrelations in the functional timeseries, we used the SPM
FAST autocorrelation model with restricted maximum likelihood esti-
mation (for details, see Arbuckle et al., 2019). High-pass filtering was

Figure 1. Experiment paradigms. A, Human participants made isometric single finger presses in the flexion and extension
directions on a custom-built keyboard. Each finger of the right hand was clamped between two keys, and each key was associ-
ated with a force transducer either above (keyboard on top of hand) or below (keyboard under the hand) the key to monitor
forces applied in the flexion and extension directions, respectively. B, Schematic illustration for a single trial in the fMRI and EMG
sessions, with associated visual feedback shown below. The white lines represent the produced force for each finger. Applying
flexion to a finger key moved the associated line down (vice versa for extension). The cue box (centered at target force) was ini-
tially presented as white at the trial start, and turned green to cue the participant to make the finger press (here, index finger
extension). The box turned blue to instruct participants to maintain the current force. At the end of the press hold, the cue box
disappeared and participants relaxed their hand. C, The monkey hand configuration and device (illustration from Schieber, 1991).
D, Trial schematic for the monkey task. The columns represent five LED cues (one per finger) that instructed the monkey both
what finger and what direction to press. The monkeys had up to 700 ms from the onset of the go-cue to press the cued finger in
the cued direction. They were trained to hold the press for 500 ms before relaxing the finger.
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then achieved by temporally prewhitening the functional data with
this temporal autocorrelation estimate. This analysis resulted in one acti-
vation estimate (“b -weights”) for each of the 30 conditions per run for
each participant. For visual display (Fig. 2) and further analysis, the b
values were divided by the root mean square error from the first-level
GLM to yield a t value per voxel for each condition in each run.

Surface reconstruction and ROI definition. Each participant’s T1-
weighted image was used to reconstruct the pial and white matter/gray
matter surfaces using Freesurfer (Fischl et al., 1999a). Individual surfaces
were aligned across participants and spherically registered to match a
template atlas (Fischl et al., 1999b) using a sulcal-depth map and local
curvature as minimization criteria. M1 was defined as a single region of
interest (ROI) on the group surface using probabilistic cytoarchitectonic
maps aligned to the template surface (Fischl et al., 2008). We defined M1
as being surface nodes with the highest probability for Brodmann area 4
that fell within 1.5 cm above and below the hand knob anatomic

landmark (Yousry et al., 1997). To avoid cross-contamination between
M1 and S1 activities along the central sulcus, voxels with .25% of their
volume in the gray matter on the opposite side of the central sulcus were
excluded.

Multivariate fMRI analysis. We used the cross-validated squared
Mahalanobis dissimilarity (i.e., crossnobis dissimilarity) to quantify dif-
ferences between fMRI activity patterns for each pressing condition
within each participant (Walther et al., 2016; Diedrichsen et al., 2020).
Cross-validation ensures the dissimilarity estimates are unbiased, such
that if two patterns differ only by measurement noise, the mean of the
estimated dissimilarities would be zero. This also means that estimates
can sometimes become negative (Diedrichsen et al., 2016). Therefore,
dissimilarities significantly larger than zero indicate that two patterns are
reliably distinct.

The fMRI activity patterns were first-level GLM b -weights for voxels
within the M1 ROI mask. Analyses were conducted using functions

Figure 2. fMRI activity patterns for finger flexion and extension in human M1. Evoked fMRI activity maps (t values) for three participants for each of the five fingers pressing in the extension
and flexion directions at 2 N. Results were normalized to a surface-based atlas. Maps are shown in the hand-knob region of the left (contralateral) hemisphere. The black dotted line shows the
fundus of the central sulcus. The top inset shows the average sulcal depth.

Arbuckle et al. · M1 Activity for Finger Flexion and Extension J. Neurosci., November 25, 2020 • 40(48):9210–9223 • 9213



from the representational similarity analysis (RSA; Nili et al., 2014) and
PCM (Diedrichsen et al., 2018) MATLAB toolboxes. The crossnobis dis-
similarity d between the fMRI activity patterns (x) for conditions
i and j was calculated as follows:

di;j ¼ 1
M

XM

m
ðxi � xjÞ

T

m
R�1 xi � xjð Þ;m

;

where the activity patterns from run m are multiplied with the activ-
ity patterns averaged over all runs except m (;m). R is the voxelwise
noise covariance matrix, estimated from the residuals of the GLM, and
slightly regularized to ensure invertibility. Multivariate noise normaliza-
tion removes spatially correlated noise and yields generally more reliable
dissimilarity estimates (Walther et al., 2016).

The dissimilarities are organized in a representational dissimilarity
matrix (RDM). The RDM is a symmetric matrix (number of conditions �
number of conditions in size) with off-diagonal values corresponding to
the paired distance between two conditions. Values along the diagonal are
zero, as there is no difference between a pattern paired with itself.

We calculated an RDM for the matched force conditions separately
(i.e., the 1.5 and 2 N presses, 10 conditions each), and then averaged the
resulting RDMs within each participant. This yielded one RDM per par-
ticipant containing the crossnobis dissimilarities between presses of the
five fingers in either direction (10 conditions, 45 dissimilarity pairs).

Estimating spatial tuning of fingers and direction.We considered the
possibility that fingers and directions could be encoded at different spa-
tial scales in M1. We therefore estimated the spatial covariance of tuning
for fingers and directions. Within each imaging run, we averaged the
fMRI activity patterns (t values) for each condition across the matched
forces (1.5 and 2 N). This yielded a vector of 10 activity values per voxel
(one value per each finger per direction), which we refer to as an “activ-
ity profile.” We modeled the activity profile values (yi,j) of each voxel
and partition using three components, as follows:

yi;j ¼ fi 1 dj 1 qi;j;

where fi is the main effect of finger i, dj is the main effect of direction j,
and qi,j is the finger � direction interaction effect. We used ordinary
least-squares regression to estimate the finger and direction components.
The residual from the regression was taken as an estimate of the interac-
tion component.

We first reconstructed the activity profiles using only the finger com-
ponent (f), and then estimated the covariance of the finger activity pro-
files between voxel pairs in M1. These covariances were calculated in a
cross-validated fashion, as follows: we averaged the reconstructed activ-
ity profiles for odd and even runs separately, and then then computed
the covariance of the activity profile of different voxels across independ-
ent partitions of the data. Given that the estimates for all components
contained some noise, normal covariance estimates are biased by the
spatial structure of the noise. Cross-validation alleviates the influence of
noise on covariance/variance estimation, as the average of the product of
noise across odd and even runs is zero.

We then binned the covariances based on the spatial distance
between each voxel pair and averaged the covariances within each bin.
The first bin included only the cross-partition covariance between each
voxel and itself (i.e., the cross-validated estimate of the voxel variances).
The second bin contained the covariances between immediately and
diagonally neighboring voxels (1.5–2.6 mm), the third bin the second
layer of direct and diagonally neighboring voxels (.2.6–5.2 mm), and so
on, up to a total distance of 20.8 mm. Finally, we normalized the binned
covariances by the cross-validated voxel variances (value of the first bin)
to obtain an estimate of the spatial autocorrelation function (ACF) for
fingers in M1.

We used the same procedure to estimate the ACF for direction.
Importantly, we included both the direction (d) and the finger � direc-
tion interaction (q) components in the activity profile reconstruction.
We included the interaction component as we hypothesized that the tun-
ing of voxels to flexion and extension patterns would be different across
fingers.

Finally, we estimated the smoothness of the finger and direction
ACFs (Diedrichsen et al., 2011). To do this, we fitted a function that
decayed exponentially with the square of the distance (d ) between voxels
(v), as follows:

ACFðvx; vx1d Þ ¼ expð � d 2

2s2
Þ:

Here, s is the SD of the ACF. If neighboring voxels are relatively inde-
pendent (i.e., low covariance), the value of s will be small. While we can
use s to express the smoothness of the ACF, the smoothness can also be
expressed as the full-width at half-maximum (FWHM) of the Gaussian
smoothing kernel that—when applied to spatially independent data—
would yield the same ACF. The SD of this Gaussian kernel is

ffiffiffiffiffiffiffiffiffi
1=2s

p
,

and the FWHM is calculated as follows:

FWHM ¼ 2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð2Þ:

p

We applied this approach to the reconstructed finger and direction activ-
ity profiles separately to estimate the FWHM of fingers and direction
M1. The goodness of fit (evaluated with R2) of the fitted exponential
decays were both high (mean 6 SEM R2 of finger ACF, 0.9606 0.008;
mean6 SEM R2 of direction ACF, 0.9086 0.020). Although there was a
significant difference between the finger and direction model R2 (two-
sided paired t test: t(8) = 2.412, p=0.0424), the mean difference was quite
small (mean6 SEM, 0.0526 0.021).

Center of gravity analysis.We analyzed the activity patterns to deter-
mine whether there were significant differences in the spatial arrange-
ment of finger flexion and extension, as proposed by Huber et al. (2020).
To ensure that our analysis closely matched this previous report, we re-
stricted the center of gravity (CoG) analysis to include only surface
nodes from Brodmann area 4a, as based on the probabilistic atlas (Fischl
et al., 2008). We also restricted the analysis to the hand region by select-
ing only vertices within 1.5 cm of the hand knob anatomic landmark.
On the flattened activity maps for each finger, we then calculated the
CoG of each map as the average spatial location ðx̂; ŷÞ of each surface
node (i), weighted by its respective t value (t), as follows:

x̂ ¼
XP

i¼1
xiti

XP

i¼1
ti

ŷ ¼
XP

i¼1
yiti

XP

i¼1
ti

;

In the above calculations, we set negative t values equal to zero,
thereby focusing our spatial analysis on regions that showed activity
increases. We used a two-factor repeated-measures multivariate
ANOVA (MANOVA) to test for significant differences between the
measured CoGs for different fingers and directions. To summarize the
structure of the spatial arrangement, we calculated the pairwise
Euclidean distances between the CoG coordinates for each condition
and arranged them into an RDM.

EMG recording and analysis
EMG recordings and preprocessing. In a separate session, we

recorded hand and forearm muscle activity to ensure that participants
performed the task as instructed. During the EMG session, participants
were seated upright, whereas during the fMRI session participants lay
prone in the scanner. In both sessions, however, we ensured that the arm
was in a relaxed position, the palm of the hand was supported by the de-
vice, the wrist was slightly extended, and the elbow joint was slightly
bent. Thus, wrist and forearm posture, both known to influence muscle
activity during finger movements (Mogk and Keir, 2003; Beringer et al.,
2020), were matched across the two sessions. Participants’ skin was
cleaned with rubbing alcohol. Surface EMG of distal muscles of the hand
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were recorded with self-adhering Ag/AgCl cloth electrodes (Kendall
H59P-127 repositionable monitoring electrodes, CardinalHealth). Elec-
trodes were cut and positioned in line with a muscle in a bipolar configura-
tion with an approximate 1 cm interelectrode distance. The surface EMG of
proximal limb muscles was recorded with surface electrodes (Bagnoli-8 sys-
tem with DE-2.1 sensors, DELSYS). The contacts were coated with a con-
ductive gel. Ground electrodes were placed on the ulna at the wrist and
elbow. The signal from each electrode was sampled at 2000Hz, de-meaned,
rectified, and low-pass filtered (fourth-order Butterworth filter, fc = 40 Hz).

Multivariate EMG analysis. We used the crossnobis dissimilarity to
quantify differences between patterns of muscle activities for each
movement condition, similar to the fMRI analysis. This metric is
invariant to the scaling of the EMG signals from each electrode
and has been established in previous work (Ejaz et al., 2015).
Briefly, we first calculated the average square root EMG activity for
each electrode and trial by averaging over the press and hold time
windows [mean window, 1800 ms (up to a maximum window of
3000 ms)]. We then subtracted the mean value for each electrode
across conditions for each run independently to remove any drifts
in the signal. These values were then divided by the SD of that elec-
trode across trials and conditions to avoid arbitrary scaling.
Finally, we calculated the crossnobis dissimilarity between pairs of
EMG activity patterns for different conditions across runs.

Experimental design of monkey finger individuation task
The behavioral task performed by two male Macaca mulatta monkeys
(monkeys C and G) has been described previously (Schieber, 1991;
Schieber and Rivlis, 2007). Briefly, the monkeys were trained to perform
cued single finger flexion and extension presses. Each monkey sat in a
primate chair and, similar to the human device described above, their
right hand was clamped in a device that separated each finger into a dif-
ferent slot (Fig. 1C). Each slot was composed of two microswitches (one
in the flexion direction and one in the extension direction). One switch
was closed by flexing the finger, the other by extending the finger. The
absolute degree of movement required to close either switch was mini-
mal (a few millimeters), and therefore the force required to make and
hold a successful press was small—similar to the human finger individu-
ation task. Therefore, like the fMRI task behavior, these finger move-
ments are very close to isometric presses.

A series of LED instructions were presented to the monkey during
each trial (Fig. 1D). A successful trial occurred when the monkey pressed
the cued finger in the cued direction without closing any other switch.
Similar to our human experiment design, the monkeys were trained to
hold the cued switch closed for 500ms before relaxing the finger (Fig.
1D). At the end of a successful trial, the monkey received a water reward.
The wrist of the monkey was also clamped in this device, and some trials
required the monkey to flex or extend the wrist. Wrist trials were not
included in the current analysis. Flexion and extension trials of each fin-
ger and wrist were pseudorandomly ordered. In the case of a behavioral
error, trials were repeated until successful. Therefore, we excluded all tri-
als with an error and also the successful trials that followed error trials to
avoid potential changes in the baseline firing rate of the recorded
neuron.

In contrast to the human task, the required force level for the mon-
keys was the same for all trials; therefore, they did not receive continuous
visual feedback about the force produced. Instead, they received small
tactile feedback when the switch closed, a feature that was absent from
the human task. Despite these small differences in feedback, the task
requirements were well matched across species: both monkeys and
humans were required to produce low, well controlled forces with a sin-
gle finger, while keeping forces on the noninstructed fingers minimal, to
avoid either unwanted switch closure or excessive movement of the asso-
ciated visual feedback.

Analysis of single-cell spiking data
Spike rate calculation. Single cells were isolated and spike times were

recorded while monkeys performed the finger individuation task. The
details of the recordings have been reported previously (Poliakov and
Schieber, 1999). Each trial was labeled with a series of behavioral

markers, indicating the time of trial onset, presentation of condition cue,
switch closure, and reward onset. For the spike rate traces (see Fig. 4),
we calculated the spike rate per 10ms bin, aligned to press onset, and
smoothed the binned rates with a Gaussian kernel (FWHM=50 ms).
For the dissimilarity analysis (see below), we calculated the average spike
rate over time per trial starting at go-cue onset (when the monkey was
instructed as to which finger and direction to press) until the end of the
hold phase (500ms after switch closure). This time window encom-
passed a short period of time before the start of the finger press and the
entire hold duration of the press (monkey C: mean window, 739ms;
monkey G: mean window, 773 ms).

Multivariate spiking analysis. Similar to the human fMRI and EMG
analyses, we computed crossnobis dissimilarities between spiking
patterns for different conditions within each monkey. To cross-
validate the estimated distances, we restricted our analysis to
include cells for which we had at least two successful trials for each
finger in both directions. This criteria yielded 44,801 trials from
238 cells in monkey C (median number of trials per cell, 168; me-
dian number of trials per condition per cell, 19) and 5535 trials
from 45 cells in monkey G (median number of trials per cell, 115;
median number of trials per condition per cell, 12). After calculat-
ing the average spike rates, we arranged the spike rates into vectors
per condition (see Fig. 4B). To account for the Poisson-like
increase of variability with increasing mean firing rates, we applied
the square root transform to the average firing rates (Yu et al.,
2009).

For each cell per condition, we randomly split the square root spike
rates from different trials into one of two partitions. The random splits
contained approximately the same number of trials, which ensured that
each condition was approximately equally represented in each partition.
We then averaged the spike rates within each partition. This yielded two
independent sets of spiking patterns per monkey (10 patterns: 5 fingers �
2 directions). Per partition, we normalized spike pattern of each neu-
ron by dividing by the maximum rate of the neuron across conditions,
and then reweighted the normalized spike rates per cell according to
the number of trials per cell (cells with more trials were upweighted;
vice versa for cells with fewer trials). Finally, we calculated pairwise
cross-validated Euclidean distances between the two sets of patterns.
We repeated this RDM calculation procedure 1000� per monkey, each
time using a different random partitioning of the data. We then aver-
aged the RDMs across iterations to yield one RDM estimate per mon-
key. We note that results were not dependent on the normalization we
chose—results were qualitatively consistent when using raw firing
rates, z-scoring the firing rates, not applying trial reweighting, and vari-
ous combinations of these approaches.

Kinematic finger model RDM
As in the study by Ejaz et al. (2015), we used the statistics of naturalistic
hand movements to predict the relative similarity of single finger repre-
sentations in M1. In the text, we refer to this model as the kinematic
model. To construct the kinematic model RDM, we used hand move-
ment statistics from an independent study in which six male participants
wore a cloth glove imbedded with motion sensory (CyberGlove, Virtual
Technologies) while they performed everyday activities (Ingram et al.,
2008). These statistics included the velocities about joint angles specific
to each of the five fingers of the participants’ right hands. Positive veloc-
ities indicated finger flexion, and negative velocities indicated finger
extension.

Because the movement in our finger pressing task was restricted to
movements about the metacarpal (MCP) joint of each finger, we used
the MCP joint velocities to predict cortical M1 finger similarity. First, we
split the data for each joint velocity into the following two vectors: one
for flexion and one for extension, taking the absolute of the velocities in
this process. During periods of finger flexion, we set the extension veloc-
ity to zero, and vice versa. This resulted in 10 velocity vectors (5 fingers
� 2 directions). Then, to account for differences in scaling, we normal-
ized each velocity vector to a length of 1. Finally, we calculated the dis-
similarities between pairs of these processed velocity vectors. We
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averaged these RDMs across the six participants in the natural statistics
dataset, yielding one kinematic model RDM.

Experimental design and statistical analysis
Statistical analysis of dissimilarities. We summarized the RDMs by

classifying dissimilarities into finger-specific and direction-specific dis-
similarities for each participant and dataset. Finger-specific dissimilar-
ities were the dissimilarities between conditions where different fingers
were pressed in the same direction (10 pairs for flexion, 10 pairs for
extension). Direction-specific dissimilarities were the dissimilarities
between conditions where the same finger was pressed in different direc-
tions (five pairs total). Within each category, dissimilarities were aver-
aged. For the human data, we used one-sided, one-sample t tests to test
whether mean finger and direction dissimilarities were greater than zero.
To compare between the average finger and direction dissimilarities, we
used two-sided paired t tests. We report the mean and SE of the dissimi-
larities where appropriate in the text.

Statistical analysis of RDM correlations. Pearson’s correlations
between the vectorized upper triangular elements of the RDMs were
used to compare different RDMs (Ejaz et al., 2015). To calculate the sta-
bility of RDMs, we calculated the Pearson’s correlations between all pos-
sible pairs of the participants’ RDMs. This yielded 36 correlations (1 per
unique participant pair). We Fisher z-transformed these correlations
and calculated the mean and SE. We used these values to calculate the
lower and upper bounds of the 95% confidence interval, assuming nor-
mality. Finally, the mean and confidence bounds were transformed back
to correlations. We report these values in the text as r = mean [lower
bound – upper bound]. The same method was applied to correlations
between measured RDMs and model predictions. Note that, because we
used a within-subject design, the muscle model predictions were specific
to each human participant. In contrast, the kinematic model prediction
was the same for each participant because data for this model was
obtained from an independent study. Paired t tests were performed on
Fisher z-transformed correlations to compare fits between models.

Estimating noise ceiling for RDM model fits. Since the dissimilarities
between fMRI patterns can only be estimated with noise, even a perfect
model fit would not result in a perfect correlation with the RDM of each
participant. Therefore, we estimated the noise ceiling, which places
bounds on the expected model correlations if the model is a perfect fit.
We first calculated the average correlation of each participant’s RDM
with the group mean RDM (Nili et al., 2014), treating the mean RDM as
the perfect model. The resulting average correlation is an overestimate
of the best possible fit, as each RDM is correlated with a mean that
includes that RDM (and hence also the measurement error of that
RDM). To then estimate a lower bound, we calculated the correlation
between a participant’s RDM and the group mean RDM in which that
individual was removed.

Results
M1 fMRI activity patterns differ strongly for different
fingers, not for direction
We measured activity patterns evoked in M1 in human partici-
pants (n= 9) while they performed a near-isometric finger flex-
ion–extension task in a 7T MRI scanner. Participants’ right
hands were clamped in a device that had force transducers
mounted both above (extension) and below (flexion) each finger
(Fig. 1A) to record forces produced at the distal phalanges. The
device limited the overall degree of movement to a few milli-
meters, thereby making the task near isometric. On each trial,
participants were cued to press a single finger in one direction,
while keeping the other fingers as relaxed as possible (Fig. 1B).
They had to reach the required force level, hold it for 1 s, and
then simply relax their hand to let the force passively return to
baseline. This aspect of the task instruction was critical to ensure
that participants did not activate the antagonist muscles during
release.

Figure 2 shows the activity patterns measured in left M1 (con-
tralateral to movement) for three participants during right-
handed finger presses at 2 N. As previously observed (Ejaz et al.,
2015), the activity patterns did not consist of focal regions of ac-
tivity dedicated to each finger. Rather, the spatial patterns were
complex and involved multiple overlapping regions within the
M1 hand area. Furthermore, the intersubject variability in the
spatial organization of these patterns was considerable.

One common observation across all participants, however,
was that the activity patterns were different between different fin-
gers (e.g., index flexion vs fourth flexion), but rather similar for
flexion and extension of the same finger (e.g., index flexion vs
index extension). We used RSA to quantify these observations by
calculating a measure of dissimilarity (crossnobis dissimilarity;
see Materials and Methods) between each pair of fMRI patterns.
Large dissimilarity values indicate that the two patterns are quite
distinct with little overlap. A value of zero indicates that the two
patterns are identical and differ only by noise. We restricted the
analysis to conditions with matched force levels across flexion
and extension. The group-averaged RDM is shown in Figure 3A.
Both within the finger flexion and extension conditions, there
was a characteristic structure with the thumb activity pattern
being the most distinct and neighboring fingers tending to have
more similar activity patterns. Across directions, activity patterns
evoked by pressing the same finger in different directions were
the most similar. This representational structure was quite stable
across participants (average interparticipant Pearson’s r=0.790;
95% CI, 0.754–0.820).

To obtain predictions for flexion and extension movements,
we needed to adapt the natural usage model, proposed by Ejaz et
al. (2015). This model used kinematic finger data, specifically the
joint-angle velocities of the MCP joints, that was recorded while
subjects participated in their normal everyday tasks (Ingram et
al., 2008, data).

Fingers were predicted to have more similar representations
if their movement velocities, across flexion and extension, were
positively correlated. For the current experiment, we split the
data into periods of finger flexion and finger extension (see
Materials and Methods), resulting in 10 time series and calculated
the correlation between them (after taking the absolute value).

The estimated kinematic RDM (Fig. 3B) showed similar
structures within flexion and extension movements. The thumb
was the most distinct compared with the other fingers, and for
the remaining fingers there was a clear similarity structure with
neighboring fingers more similar than non-neighboring. This
structure very closely mirrored those found for fMRI activity pat-
terns: flexion and extension fMRI RDMs correlated strongly
with the corresponding kinematic models for flexion (r= 0.727;
95% CI, 0.635–0.800) and extension (r=0.797; 95% CI, 0.684–
0.873) RDMs (Fig. 3C, white). Compared with the noise ceiling
[Fig. 3C, gray bar (which reflects the best possible model fit given
measurement noise) see Materials and Methods], the kinematic
model accounted for 79.9% and 84.9% of the variance in the flex-
ion and extension fMRI RDMs, respectively.

In contrast, the kinematic model completely failed to predict
the relationships between activity patterns for flexion and exten-
sion. Because flexion and extension of the same finger can never
co-occur, the kinematic model predicts that the movements are
associated with quite distinct cortical activity patterns. The meas-
ured fMRI patterns, however, were rather similar for these two
actions. As a result, the full kinematic model was not a good fit
to the full fMRI RDM (r=0.086; 95% CI, 0.038–0.133), much
below the noise ceiling (r= 0.875; 95% CI, 0.822–0.913).
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Thus, although the statistics of movement co-occurrence was
a good predictor for representational similarity between the
activity patterns for different fingers (i.e., within flexion or exten-
sion), this simple model failed to predict the relative organization
of the patterns for flexion and extension of the same finger.
Although flexion and extension of the same finger cannot
co-occur, their fMRI activity patterns were highly similar. In the
remainder of this paper, we explore a number of possible explan-
ations for this finding and propose a candidate model of the
organization.

Similarities of cortical representations for presses in
different directions cannot be explained by the patterns of
muscle activity
We first considered the possibility that the structure of similarity
between flexion and extension presses can be explained by the
patterns of muscle activity required by these movements.
Specifically, it is possible that participants cocontracted both ago-
nist and antagonist muscles, or that they activated the

antagonistic muscles when returning to
baseline. Given the temporally sluggish na-
ture of the BOLD signal measured with
fMRI, either behavior could cause the cort-
ical activity patterns evoked during flexion
to resemble activity patterns during exten-
sion (and vice versa). Therefore, we con-
ducted a control experiment with the same
participants outside the MR scanner, dur-
ing which we recorded surface EMG from
14 sites of the hand and forearm in the
participants (Fig. 4A), while they per-
formed the same isometric finger flexion–
extension task as in the fMRI session.
Performance on the task was comparable
to that during the fMRI scan.

As an example, the participant-aver-
aged EMG data from an electrode placed
above the abductor digiti minimi (ADM)
muscle (Fig. 4B) showed that the ADM
muscle was recruited only during the flex-
ion of the little finger. During extension
of the same finger, the muscle was silent,
both during hold and release. In general,
we found very little evidence for cocon-
traction of the antagonist muscle.

For a quantitative analysis, we aver-
aged the muscle activity from the time of
the go-cue to the end of the hold phase.
The EMG patterns averaged across partic-
ipants (Fig. 4C) already allow for two
observations. First, the muscle activities
for the same movement at different force
levels were very similar and increased
with increasing force. The average corre-
lation across force levels for each finger–
direction combination was high, indicat-
ing that the same muscles were consis-
tently recruited to perform the same
finger press across different force levels
(within participant correlations: r=0.860;
95% CI, 0.808–0.898). Second, quite dis-
tinct muscle groups were recruited to
produce forces with the same finger in
different directions. The average correla-

tion between the pattern of muscle activity recruited to press the
same finger in different directions was low (within-participant
correlations; r=0.244; 95% CI, 0.150–0.334).

We then derived a muscle-based RDM by calculating the
crossnobis dissimilarity between normalized activity patterns for
each condition. As for the fMRI analysis, we included the pat-
terns for the matched force conditions only. The group-averaged
matrix RDM (Fig. 4D) was only moderately stable across partici-
pants (average interparticipant Pearson’s r=0.480; 95% CI,
0.379–0.570), likely reflecting the fact that there was some degree
of interindividual variation in electrode placement.

We tested to what degree the patterns of muscle activity, spe-
cific to each participant, could explain the cortical similarity
structure between individual finger movements within the flex-
ion or extension directions. For the flexion direction, the fit of
the muscle model (r=0.611; 95% CI, 0.408–0.757) was lower
than that for the kinematic model in six of nine participants (Fig.
3C), but the difference did not reach statistical significance (one-

Figure 3. Representational structure of fingers and direction in human M1. A, Group average of the fMRI RDM. B,
Predicted RDM from the kinematic model. To aid visual inspection, the values of the RDMs in A and B are plotted as the
square root of the dissimilarities. All statistical analyses of the RDMs are done on squared distances. C, Model fits (Pearson’s
correlation) of the kinematic (white) and muscle (gray) models to the M1 RDM for flexion, extension, and the full RDMs (the
indices for each RDM are shown on the right). The muscle model was specific to each participant and was estimated from
the EMG data. The gray bars denote noise ceilings (theoretically, the best possible fits). Each dot reflects one participant, and
thin gray lines connect fits of each model to the same participant. Black bars denote the means, and black dashed lines
denoted the mean paired difference. pSignificant differences between model fits (one-sided paired t test, p, 0.05); †signifi-
cantly lower than the noise ceiling (two-sided paired t test, p, 0.05); n.s., not significant (p. 0.05).
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sided paired t test kinematic . muscle: t(8) = 1.775, p= 0.0569).
For the extension direction, the muscle model fit substantially
worse (r=0.020; 95% CI,�0.147 to 0.187), significantly less than
the kinematic model (one-sided paired t test kinematic . mus-
cle: t(8) = 5.588, p=2.59e-4). This generally confirms the results
reported in the study by Ejaz et al. (2015) that the relative simi-
larities of M1 finger flexion activity patterns are better explained
by the correlation structure of everyday movements than the cor-
relation structure of the required muscle activity patterns. Our
new results now show that this observation generalized also to
extension movements.

Critically, however, the muscle activity model did not provide
a good explanation for the similarity between flexion and exten-
sion patterns. The fit for the full muscle model (r=0.146; 95%
CI, 0.055–0.235) was as poor as for the kinematic model (two-
sided paired t test muscle vs kinematic: t(8) = 1.082, p= 0.3108)
and significantly below the noise ceiling (two-sided paired t test
noise ceiling vs muscle: t(8) = 12.701, p= 1.39e-6). Thus, neither
the co-occurrence of movements nor the pattern of muscle activ-
ities can explain the high similarity of activity patterns for finger
flexion and extension in M1.

M1 spiking output differs equally for fingers and direction
To what degree is the high similarity between flexion and exten-
sion patterns a function of fMRI as the measurement modality?
To approach this question, we analyzed the spiking activity of
output neurons in M1 during an equivalent single finger individ-
uation task in two trained nonhuman primates (M. mulatta;
Schieber and Rivlis, 2005, 2007, data). To facilitate this, we had

designed the behavioral task for the human fMRI experiment to
closely match the task for the monkeys, such that we could make
strong comparisons across species and measurement modalities.
Figure 5A shows the condition averaged firing rate traces from a
single neuron from this dataset. This neuron displayed strong
preference (increased firing rates) for flexion of the middle finger
and extension of the index finger. As previously reported
(Schieber and Hibbard, 1993), the population of M1 neurons
demonstrated complex, heterogeneous tuning across fingers and
directions.

To compare the representational structure from spiking data
to that obtained with fMRI, we calculated the mean firing rate
for each neuron from the go-cue onset to the end of the hold
phase during each trial. We then calculated dissimilarities
between the population responses for different conditions (see
Materials and Methods), similar to the analysis of the human
EMG and fMRI data. The average RDM is shown in Figure 5C.
Similar to the structure of representations in human M1, the
thumb activity patterns for both directions were the most dis-
tinct, and neighboring fingers had more similar activity pat-
terns. In contrast to the fMRI data, however, the spiking
patterns for flexion and extension of the same finger were quite
distinct.

To quantify this observation, we averaged dissimilarities
between different fingers pressing in the same direction (finger
specific) and the same finger pressing in different directions
(direction specific). The finger and direction-specific dissimilar-
ities were close in magnitude for both monkeys (Fig. 6A). Also,
the human EMG patterns had roughly matched direction-

Figure 4. Quantifying similarity of muscle activity patterns during finger flexion and extension. A, Fourteen surface electrode sites. B, Group averaged normalized EMG (normalized, per par-
ticipant, to peak activity from this electrode across trials) from the ADM muscle during 2 N little finger (5) flexion (dark gray) and extension (light gray) trials, aligned to hold onset (0 s).
During extension movement (light gray trace, .1000 ms), this flexor muscle was not recruited. Shaded areas reflect SEM. Traces were smoothed with a Gaussian kernel (FWHM, 25ms).
C, Average muscle activity across participants, normalized by peak activation across conditions (per participant), recorded from the 14 electrode sites during the flexion extension task. Each con-
dition was measured under three force conditions. D, Group average RDM of the muscle activity patterns. As in Figure 2, the RDM is plotted as square root dissimilarities to aid visual inspection.
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specific and finger-specific dissimilarities (Fig. 6B). In contrast,
the same analysis on the human fMRI data showed a clear and
significant difference between these two kinds of dissimilarities
(Fig. 6C).

For a statistical comparison, we then calculated the ratio
between dissimilarities between different directions and dissimi-
larities between different fingers (Fig. 6D). The fMRI ratio was
significantly lower than 1 (mean ratio, 0.2986 0.071; one-sided
one-sample t test: t(8) = �9.858, p=4.72e-6), indicating stronger
representation of fingers compared with direction. In contrast,
both the spiking patterns (monkey C ratio, 1.173; monkey G
ratio, 1.025) and the human muscle patterns (mean ratio,
0.9846 0.051) differed similarly for different fingers and differ-
ent directions, with the muscle ratios being significantly larger
than those for human fMRI (two-sided paired t test: t(8) = 9.733,
p=1.04e-5). Thus, we found a clear difference between the struc-
ture of fMRI patterns and the structures of spiking and muscle
activity patterns.

We suggest that this difference is informative about the gen-
eral organization of finger flexion and extension movements in
M1. The discrepancy between the two measurement modalities
can likely be attributed to two (non-mutually exclusive) differen-
ces between fMRI and electrophysiology. First, the fMRI signal is
dominated by excitatory inputs and local synaptic signaling, and
only partly reflects the spiking activity of output neurons
(Logothetis et al., 2001). Therefore, the overlapping fMRI activity
patterns for flexion and extension might reflect similar inputs
and shared local processes within these cortical areas, while the
output spiking of these two population remains quite distinct to
produce the different patterns of muscle activity required for fine
finger control.

Second, fMRI samples a proxy of neuronal activity in a coarse
manner, averaging across ;200,000 cortical neurons/mm3 in
M1 (Young et al., 2013). Thus, even high-resolution fMRI is

biased to functional organization at a coarse spatial scale
(Kriegeskorte and Diedrichsen, 2016), and so our results could
be caused by an organization where neurons tuned to different
movement directions for the same finger (or combination of fin-
gers) are clustered together, while neurons that control different
fingers or finger combinations are more spatially separated.

Spatial organization of finger and direction related fMRI
patterns
To investigate the second explanation directly, we attempted to
determine whether the activity patterns associated with different
fingers were organized on a coarser spatial scale than the patterns
associated with flexion and extension of a given finger. Using the
fMRI data, we calculated to covariance of the finger-specific and
direction-specific activations for each pair of voxels within M1
and binned these covariances according to the spatial distance
between voxel pairs (see Materials and Methods). If direction is
encoded at a finer spatial scale than fingers, we would expect fin-
ger effects to be correlated over larger spatial distances.

In contrast to this prediction, the spatial correlation functions
for fingers and direction were quite similar (Fig. 6E). We esti-
mated the FWHM of the spatial autocorrelation functions. To
account for outliers, we evaluated the median FWHM values.
The median FWHM of the finger spatial kernel in M1 was 3.22
mm (mean 6 SEM, 3.44 6 0.24 mm), comparable to previous
reports (Diedrichsen et al., 2011; Wiestler et al., 2011). The me-
dian FWHM of the direction spatial kernel in M1 was 4.65 mm
(mean 6 SEM, 4.77 6 0.84 mm), and there was no significant
difference between the two (two-sided paired Wilcoxon signed-
rank test, finger vs direction: W=11, p=0.2031; two-sided
paired t test finger vs direction: t(8) = �1.417, p=0.1942).
Therefore, we did not find any direct empirical support for the
idea that differences between flexion and extension patterns are
organized at a finer spatial scale than differences between fingers.

Figure 5. Analysis of M1 spiking activity during monkey single finger flexion and extension. A, Trial averaged firing rates from one cell (monkey C). Traces are aligned to press onset (0 s).
This cell demonstrates selective tuning to middle finger flexion and index finger extension. Firing rates were calculated for 10ms bins and smoothed with a Gaussian kernel (FWHM, 50ms).
Shaded areas reflect SE across trials. B, Averaged firing rates for a subset of cells from monkey C, arranged by condition. Cell 13 is plotted in A. Firing rates are normalized to the peak rate per
cell. C, Average monkey RDM (square root dissimilarities).

Arbuckle et al. · M1 Activity for Finger Flexion and Extension J. Neurosci., November 25, 2020 • 40(48):9210–9223 • 9219



However, our analysis was itself lim-
ited by the spatial resolution of 7T
fMRI, such that we cannot rule out the
possibility that subpopulations for dif-
ferent directions are interdigitated at a
subvoxel scale.

Additionally, we did not find evi-
dence of a substantial spatial sepa-
ration of flexion versus extension
movements, as was suggested by
Huber et al. (2020). These authors
observed two sets of digit maps in
Brodmann area 4a, with one set being
more activated for whole hand grasp-
ing, and the other more activated for
whole-hand retraction movements.
From this, the authors suggested that
each individual finger map has a pref-
erential function role in guiding flex-
ion and extension movements. To test
this idea with our fMRI data, we calcu-
lated the CoG of the activity maps for
each finger pressing in the flexion and
extension directions in Brodmann area
4a (see Materials and Methods).

As shown in Figure 6F, both finger
flexion and extension CoGs revealed
the expected overall somatotopic gra-
dient, with thumb movements activat-
ing more ventrolateral areas and the
little finger activating more dorsome-
dial areas in 4a (two-factor repeated-
measures MANOVA, finger factor:
Wilks’ K(4,32) = 0.28, p = 2.2075e-6).
However, there was no significant differ-
ence in these digit maps across flexion
and extension movements (two-factor
repeated-measures MANOVA, direction
factor: Wilks’ K(1,8) = 0.88, p = 0.6427;
finger � direction interaction: Wilks’
K(4,32) = 0.65, p= 0.0793). We then
calculated the pairwise Euclidean dis-
tances between the condition CoGs
(Fig. 6G) and compared the between-
finger and within-finger distances, as
was done previously. Replicating the
results from the fMRI RSA analysis,
we found that pressing different fin-
gers resulted in more spatially distinct
activation patterns compared with
pressing the same finger in different
directions (mean ratio, 0.676 0.04;
one-sided one-sample t test ratio, 1:
t(8) = �8.003, p= 4.356e-5). This find-
ing is inconsistent with the idea of
separate flexion and extension finger
maps.

Discussion
Here we investigated how the population activity in M1 is organ-
ized for control of flexion and extension of single fingers. We an-
alyzed M1 population activity measured in humans with 7T
fMRI and spiking data from NHPs while participants made

isometric single finger presses in either direction. Importantly, we
ensured that the behavioral tasks in both experiments were carefully
matched to allow us to compare results across the two datasets.

We first demonstrated that the representational structure of
single finger flexion or extension presses in humanM1measured
with fMRI were relatively well explained by the natural statistics
of everyday movements, replicating the flexion results reported
in the study by Ejaz et al. (2015) and extending them to single

Figure 6. Comparing strength of finger and direction representations across datasets. A–C, The average finger- and direction-
specific dissimilarities for the spiking (A), human EMG (B), and human fMRI (C) datasets. Each dot denotes one participant, and
lines connect dots from the same participants. Black bars denote the means, and black dashed lines reflect the mean paired dif-
ferences. †Dissimilarities significantly larger than zero (one-sided t test, p, 0.05); psignificant difference between finger and
direction dissimilarities (two-sided paired t test, p, 0.05). D, The ratio of the direction-to-finger dissimilarities for each dataset.
Values ,1 indicate stronger finger representation. †Dissimilarities significantly lower than one (one-sided t test, p, 0.05);
psignificant differences between dissimilarity ratios (two-sided paired t test, p, 0.05); n.s., not significant (p . 0.05). E,
Estimated spatial autocorrelations of finger (black) and direction (gray) pattern components in human M1, plotted as a function
of spatial distance between voxels. No significant difference was observed between finger and direction tuning in M1. The thick
lines denote the median spatial autocorrelation functions, and small lines are drawn for each participant for each pattern component.
The vertical shaded bar denotes the distance between voxel size, for which correlations can be induced by motion correction. F, CoG
of activation elicited by single finger presses in the flexion or extension direction for each participant. CoGs were aligned across partic-
ipants before plotting by subtracting the center of the informative region within each participant (i.e., the mean CoG across all condi-
tions). A somatotopic gradient for finger flexion and extension in Brodmann area 4a is visible with the thumb being more ventral,
and the little finger more dorsal. G, Group average RDM of the paired Euclidean distance between condition CoGs.
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finger extension movements. The same model, however, failed to
correctly predict the relationship between flexion and extension
movements. Because flexion and extension of the same finger
cannot temporally co-occur, the model predicted quite separate
representations for the two actions. In our data, however, we
observed the opposite effect—cortical M1 activity patterns meas-
ured with fMRI in humans were very similar for flexion and
extension of the same finger, as compared with the quite distinct
patterns for different fingers. We also analyzed spiking data from
a similar task in two monkeys and found that the similarity of
finger flexion and extension was specific to fMRI: in the monkey
electrophysiological recordings, different movement directions
were associated with distinct patterns of neuronal activity.

The discrepancy between the fMRI and electrophysiological
measures suggest a specific organization of finger flexion and
extension movements in M1 (Fig. 7). This suggested architecture
has two characteristics that likely contribute to the observed dif-
ference between measurement modalities.

First, we hypothesize that neurons that contribute to the flex-
ion of a finger receive similar sensory input as neurons that con-
tribute to the extension of the same finger (Fig. 7, dashed line).
There is evidence in the literature to support such an organiza-
tion. In macaque M1, single neurons tuned to torque production
at the shoulder integrate information from the shoulder and
elbow joints to facilitate rapid corrective responses to mechanical
arm perturbations (Pruszynski et al., 2011). Thus, these neurons
receive common sensory input about the shoulder and elbow
joints, but the output is largely specific to movements about the
shoulder. Additionally, units controlling flexion and extension of
the same finger are likely to directly communicate with each
other (Fig. 7, curved solid arrows). Such coordination would be
necessary to orchestrate fast alternation of finger movements
and to finely control the grip force during object manipulation.

This organization would lead to highly similar fMRI activity
patterns. In cortical gray matter, the BOLD signal measured with
fMRI reflects mainly EPSPs, which are caused by input to a
region or recurrent activity within a region (Logothetis et al.,
2001). This is because much of the metabolic costs associated

with signal transmission arise from re-establishing the resting
membrane potential of neurons after an EPSP (Attwell and
Laughlin, 2001; Magistretti and Allaman, 2015; Yu et al., 2018).
Given that the input to subpopulations controlling flexion and
extension of the same finger will be highly temporally correlated,
the fMRI activity patterns for the two movements should also be
very similar.

At the same time, the two subpopulations need to produce
distinct spiking outputs. To do so, the populations must receive a
control signal input that defines whether to flex or extend a fin-
ger. Indeed, in our fMRI data, although flexion and extension
patterns for the same finger were highly similar, we could still
discriminate between the patterns (Fig. 6C). This control signal
would influence how neurons react to sensory inputs and the in-
formation they exchange. Thus, the observed local variations in
metabolic activity would be dissociated from the local neural fir-
ing rates (Picard et al., 2013).

As a second characteristic, we also hypothesize that units con-
trolling muscle patterns that produce flexion and extension of
the same effector are spatially colocalized to support fast and effi-
cient communication. Because fMRI samples activity in a coarse
manner, even high-resolution fMRI is biased to functional orga-
nization at a coarse spatial scale (Kriegeskorte and Diedrichsen,
2016). Therefore, features that exist at fine spatial scales in the
neural population are underrepresented in fMRI activity pat-
terns. Our results could therefore be caused by an organization
where neurons tuned to different movement directions for the
same finger (or combination of fingers) are clustered together,
while neurons that control different fingers or finger combina-
tions are more spatially separated. We did not find any evidence
for a difference in the spatial organization of fingers and direc-
tion in the fMRI data. However, given that this comparison itself
is limited by the spatial resolution of fMRI, we cannot rule out
that differences in the fine-grained spatial organization also con-
tributed to the observed effect.

Although we experimentally studied the flexion and extension
of single fingers, we do not suggest that isolated finger move-
ments are explicitly represented in M1. Rather, M1 output neu-
rons will produce a complex pattern of muscle activity. This
complexity likely arises because the neuronal populations are
optimized to produce muscle activities that elicit combinations
of finger movements that are useful in everyday tasks (Poliakov
and Schieber, 1999; Gentner and Classen, 2006; Ejaz et al., 2015).
When we measure activity patterns related to movements of iso-
lated fingers, we simply observe the specific combination of neu-
ronal populations that need to be active to move a single finger
(Schieber, 1990). The core of our hypothesis is that populations
of neurons that produce opposing muscular patterns form a
functional unit with increased communication, common sensory
input, and potentially also spatial colocalization.

Our findings are at odds with the organization suggested by
Huber et al. (2020). Using high-resolution functional imaging in
humans, the authors reported evidence of two spatially distinct
finger maps in M1: one for flexion and one for extension.
Consistent with Huber et al. (2020), we found that individuated
finger activity patterns in M1 are fractured and have multiple
hotspots (Fig. 2). However, we found no evidence for a clear spa-
tial separation of finger flexion and extension into two action
maps (Fig. 6F,G). Although the spatial resolution of BOLD imag-
ing in our study was lower than that of the blood volume-based
method used by Huber et al. (2020), we should have been able to
detect larger spatial separations between flexion and extension
movements than between individual fingers. Instead, the

Figure 7. Summary model of M1 organization. Output neurons in M1 produce complex
patterns of muscular activity. We refer to groups of neurons that, together, evoke a complex
pattern of muscle activity that results in single finger movements as functional units (circles).
These functional units receive a control signal input for the upcoming movement (solid lines
with arrows). Functional units that evoke movements of the same finger in opposite direc-
tions receive common inputs (dashed lines) and share strong recurrent connections (circular
lines). The spiking output (solid lines without arrows) of these units, however, is directionally
specific. Additionally, under the spatial scale model, functional units tuned to finger move-
ments in different directions are clustered together according to their finger tuning.
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opposite was the case. Both the RSA and the spatial analyses
showed greater differences between fingers than between direc-
tions. These results, however, are not unexpected. Partial inacti-
vation of neurons in the hand area of macaque M1 result in a
complex loss of flexion and/or extension movements of different
fingers (Schieber and Poliakov, 1998), and electrophysiological
recordings from this same area show that flexion and extension
preference is not spatially clustered (Schieber and Hibbard,
1993). We believe that the differences between our results and
those of Huber et al. (2020) are likely explained by the fact that
Huber et al. (2020) did not study flexion and extension of indi-
vidual fingers, but relied on a large spatial gradient detected
between whole-hand grasping and retraction. We think this is
problematic, as the control requirements of individual finger
movements is qualitatively different from those of whole-hand
grasping. That is, neuronal activity during whole-hand grasping
is not the sum of the neural activity during individuated finger
flexion movements (Ejaz et al., 2015) but, rather, engages a dif-
ferent control mechanism. Consistent with this idea, electrophys-
iological studies have shown that the neural control of whole-
hand and individuated finger movements relies on different neu-
ral subpopulations (Muir and Lemon, 1983; Lemon, 2008).

There are of course many caveats when comparing results
across different recording methodologies, experimental setups,
and species. While we tried to make the behavioral tasks across
human and macaques as similar as possible, species differences
or the extensive training for the nonhuman primates may
account for some of the differences.

Overall, however, we believe that the comparison between
fMRI and spiking provides some interesting insights into the or-
ganization of the hand region of the primary motor cortex.
Cortical representations of single finger movements are not
purely dictated by the kinematics of hand usage. We posit that
the deviation from this organization appears to reflect a control
process, where neurons tuned to movements of a specific finger
receive common sensory input and share local recurrent proc-
esses. These tightly coordinated populations then produce the
spiking output that needs to be quite distinct for the flexion and
extension of the same finger.
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