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Abstract Motor planning plays a critical role in producing fast and accurate movement. Yet, the 
neural processes that occur in human primary motor and somatosensory cortex during planning, 
and how they relate to those during movement execution, remain poorly understood. Here, we 
used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single 
finger movement planning and execution. The inclusion of no-go trials and variable delays allowed 
us to separate what are typically overlapping planning and execution brain responses. Although 
our univariate results show widespread deactivation during finger planning, multivariate pattern 
analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), 
which predicted the planned finger action. Surprisingly, these activity patterns were as informative 
as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility 
that the detected information was an artifact of subthreshold movements during the preparatory 
delay. Furthermore, we observed that finger-specific activity patterns during planning were highly 
correlated to those during execution. These findings reveal that motor planning activates the 
specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in 
both regions is overall suppressed. We propose that preparatory states in S1 may improve move-
ment control through changes in sensory processing or via direct influence of spinal motor neurons.

Editor's evaluation
In this elegant and rigorous study, the authors investigated the neural correlates of planning and 
execution of single finger presses in a 7T fMRI study focusing on primary somatosensory (S1) and 
motor (M1) cortices. BOLD patterns of activation/deactivation and finger-specific pattern discrim-
inability indicate that M1 and S1 are involved not only during execution, but also during planning 
of single finger presses. These important results clearly establish that the role of primary somato-
sensory cortex goes beyond pure processing of tactile information and will be of great interest for 
researchers in the field of motor control and of systems neuroscience.

Introduction
Animals are capable of generating a wide variety of dexterous behaviors accurately and effortlessly on 
a daily basis. This remarkable ability relies on the motor system reaching the appropriate preparatory 
state before each movement is initiated.
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At the level of behavior, the process of motor programming, or planning, has long been shown to 
be beneficial to performance (Keele, 1968; Keele et al., 1976; Rosenbaum, 1980), leading to faster 
reaction times (Klapp and Erwin, 1976; Klapp, 1995; Haith et al., 2016) and more accurate response 
selection (Ghez et al., 1997; Wong and Haith, 2017; Ariani and Diedrichsen, 2019; Hardwick et al., 
2019). The behavioral study of motor planning led to neurophysiological investigations showing the 
presence of preparatory signals in the patterns of neuronal firing in the dorsal premotor cortex (PMd, 
Cisek and Kalaska, 2004; Cisek and Kalaska, 2010; Hoshi and Tanji, 2006), the supplementary 
motor area (Hoshi and Tanji, 2004), and the posterior parietal cortex (Cui and Andersen, 2007; Cui 
and Andersen, 2011; Andersen and Cui, 2009). Building on this work, human neuroimaging studies 
have shown that activity in parietofrontal brain regions during planning of prehension movements can 
be used to decode several movement properties such as grip type (Gallivan et al., 2011b; Ariani 
et al., 2015), action order (Gallivan et al., 2016), and effector (Gallivan et al., 2011a, Gallivan et al., 
2013; Leoné et al., 2014; Turella et al., 2016).

At the level of neural population dynamics (Vyas et al., 2020), motor planning can be understood 
as bringing the neuronal state toward an ideal preparatory point. Once this state is reached and the 
execution is triggered, the intrinsic dynamics of the system then let the movement unfold (Church-
land et al., 2010; Shenoy et al., 2013). Preparatory neural processes have not only been observed 
in premotor and parietal areas, but also in primary motor cortex (M1, Tanji and Evarts, 1976; Cram-
mond and Kalaska, 2000; Ariani et al., 2018). In contrast, the degree to which primary somatosen-
sory cortex (S1) receives information about the planned movement before movement onset is less 
clear.

S1 is often considered to be mostly concerned with processing incoming sensory information 
from tactile and proprioceptive receptors arising after movement onset. Consistent with this notion, 
previous functional magnetic resonance imaging (fMRI studies have not detected the presence of 
planning-related information in this area Gallivan et  al., 2011a; Gallivan et  al., 2011b, Gallivan 
et al., 2016; Gallivan et al., 2013; although see Gale et al., 2021). However, challenging this notion, 
in the past years research has shown that S1 can be somatotopically activated even in the absence 
of tactile inputs, for instance during touch observation (Kuehn et al., 2014), attempted movements 
without afferent tactile inputs (Kikkert et al., 2021), and through attentional shifts (Puckett et al., 
2017). Moreover, a recent human electrocorticography (ECoG) study suggested a possible role for S1 
in cognitive-motor imagery (Jafari et al., 2020). The authors recorded neural activity from S1 while a 
tetraplegic participant imagined reaching movements and found that S1 neurons encoded movement 
direction during motor imagery in the absence of actual sensations. Another recent ECoG study in 
nonhuman primates (Umeda et al., 2019) showed grasp-specific information in the signals from S1 
well before movement initiation, and only slightly later than in M1.

However, it remains unknown whether S1 plays a role during motor planning in human participants 
with an intact sensory system. Furthermore, we currently do not know how the signals during action 
preparation relate to those during execution, a fact that could provide important insight into the role 
these signals may play.

Here, we designed a high-field (7T) fMRI experiment to study what brain regions underlie the plan-
ning of individual finger presses and how these brain representations relate to those during execution. 
We used variable delays between an instructing cue and a go signal, as well randomly interspersed 
no-go trials, to temporally separate the evoked responses to movement planning and execution. 
Using advanced multivariate pattern analyses we were able to examine the relationship between the 
fMRI patterns related to planned and executed finger actions.

Results
Deactivation in sensorimotor regions during planning of finger actions
We instructed 22 participants to plan and execute repeated keypresses with individual fingers of 
their right hand on a keyboard device while being scanned with 7T fMRI. The key to be pressed 
corresponded to one of three fingers and was cued during the preparation phase by numbers (1 = 
thumb, 3 = middle, 5 = little, e.g., Figure 1A) presented on a computer screen that was visible to the 
participants lying in the scanner through an angled mirror. After a variable delay (4–8 s), participants 
received a color cue indicating whether to press the planned finger (go trials), or whether to withhold 
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the response (no-go trials). Upon the go cue, participants had to initiate the correct response as fast 
as possible and make six presses of the designated finger, before receiving accuracy points for reward 
(see Materials and methods).

To control for involuntary overt movements during the preparation phase, we required partici-
pants to maintain a steady force on all the keys during the delay, which was closely monitored online. 
To ensure that planning results would not be biased by the subsequent execution, we restricted all 
our analyses of the preparation phase to no-go trials only (see Materials and methods). First, we 
asked which brain regions showed an evoked response during the planning of finger presses (e.g., 
Figure 1B).
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Figure 1. fMRI task and blood-oxygen-level-dependent (BOLD) responses. 
 (A) Example trial with timing information. Background colors indicate different experimental phases (yellow = preparation; green = move [go] or stay 
[no-go]; purple = reward; gray = intertrial interval, ITI). (B) Group-averaged BOLD response (N = 22) for go (blue) and no-go (orange) trials in a region 
that shows no planning-evoked activity (left M1, top), and one that shows some planning-evoked activity (left anterior superior parietal lobule [aSPL], 
bottom). Shaded areas indicate standard error of the mean (SEM). Background colors correspond to trial phases as in A.
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We focused our analysis on the lateral aspect of the contralateral (left) hemisphere (purple and 
white areas of Figure 2 inset), which included the primary motor and somatosensory cortex, as well as 
the premotor cortex and anterior parietal cortical regions. To examine brain activation during finger 
planning, we performed a univariate contrast of the preparation phase (across the three fingers) vs 
the resting baseline (Figure  2A). Overall, the instruction stimulus evoked little to no activation in 
our regions of interest (ROIs, see Materials and methods). In fact, compared to resting baseline, 
we observed significant deactivation (Figure 2E) in the primary motor cortex (M1, t21 = −6.939, p = 
7.446e−07) and in the primary somatosensory cortex (S1, t21 = −5.508, p = 1.823e−05). Significant 
deactivation was also observed in the PMd (t21 = −2.929, p = 0.008). While anterior regions in the 
superior parietal lobule (aSPL) showed some signs of activation (Figures 1B and 2A), these did not 
reach statistical significance when tested at the ROI level (t21 = 1.881, p = 0.074).

A wider whole-brain search (Figure  2—figure supplement 2) did not provide evidence for 
planning-related activation in other secondary motor areas. This lack of planning-related activation in 
high-order areas in planning is likely explained by the low task difficulty (i.e., little planning demands). 
Participants were only asked to plan repeated movements of a single finger, resulting in little amounts 
of overall planning activation. In contrast, execution strongly activated both primary and high-order 
sensorimotor regions (Figure 2C), with activation being significant in all tested ROIs (Figure 2E, all t21 
> 14.824, all p < 1.351e−12).

Planning induces informative patterns in primary somatosensory and 
motor cortex
Although we found little univariate planning-related activation, preparatory processes need not 
increase the overall activation in a region. Rather, the region could converge to a specific preparatory 
neural state (Churchland et al., 2010), while activity increments and decrements within the region 
(i.e., at a finer spatial scale) average each other out. In this case, information about planned move-
ments would be present in the multivoxel activity patterns in that region.

To test this idea, we calculated the cross-validated Mahalanobis dissimilarity, or crossnobis distance 
(see Materials and methods), between activity patterns. First, the activation patterns (beta weights) 
for the planning phase of no-go trials where prewhitened using the voxel-by-voxel covariance matrix. 
The distance was then calculated by comparing activity patterns across partitions (imaging runs), 
such that the value of the dissimilarity is on average zero if the two conditions only differ by measure-
ment noise. Thus, systematically positive values of this dissimilarity measure indicate that the patterns 
reliably differentiate between the different planned actions (Walther et al., 2016; Arbuckle et al., 
2020). Indeed, a surface-based searchlight approach (Oosterhof et al., 2012) revealed reliably posi-
tive crossnobis distance between the activity patterns related to planning of individual finger presses 
(Figure 2B), which the ROI analysis confirmed to be significantly greater than zero in both M1 (t21 = 
2.343, p = 0.029) and S1 (t21 = 3.137, p = 0.005, Figure 2F).

The distribution on the flat surface map of these distance values during planning (Figure  2B) 
appeared to be highly similar to the distribution of distances during execution (Figure 2D). To quan-
tify this topographic similarity, we computed the ratio between distances in different Brodmann area 
(BA) subdivisions of our ROIs (see Materials and methods), reasoning that a mismatch in location 
would result in large differences in ratio values. However, the ratio between planning and execution 
distances was roughly stable across the different subregions of sensorimotor cortex (BA 4a: 0.23, 
BA 4b: 0.16, BA 3a: 0.24, BA 3b: 0.19, BA 1: 0.22, BA 2: 0.31). In other words, the average distance 
between finger-specific activity patterns during planning was between 16% and 31% of the average 
pattern distance during execution. Thus, we not only show the existence of planning-related activity 
in S1, but also that S1 activity patterns are at least as informative as M1 activity patterns.

Visual inspection suggested that the informative patterns during planning may be concentrated 
more dorsally in M1 and S1 relative to execution. To test for the possibility that the location on the 
flat surface map of the peaks of the crossnobis distance for M1 and S1 was statistically different across 
subjects between planning and execution, we used a Hotelling T2 test that allowed us to compare 
the difference between two multivariate means of different distributions (i.e., the distributions of x–y 
coordinates for the peaks of planning and execution). This test revealed no systematic difference in 
the location of the peak vertex between planning and execution across subjects (M1: T2

2,20 = 0.725, p 
= 0.712; S1: T2

2,20 = 2.424, p = 0.335).

https://doi.org/10.7554/eLife.69517
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Figure 2. Activation and distance analyses of movement planning and execution. The inset shows the inflated cortical surface of the contralateral (left) 
hemisphere, highlighting the area of interest (A-D, purple) and the strip used for the profile region of interest (ROI) analysis (E, F, white). Major sulci 
are indicated by white dotted lines.( A) Univariate activation map (percent signal change) for the contrast planning > baseline (no-go trials only). (B) 
Multivariate searchlight map of the mean crossnobis distance between the planning of the three fingers (no-go trials only). (C) Same as A, but for the 

Figure 2 continued on next page
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Together, our analyses indicate that information about single finger actions is already represented 
during motor planning in the same parts of the primary motor and somatosensory cortices that are 
engaged during execution of the presses. Given that we only used the activity estimates from no-go 
trials (~40% of total trials), this information cannot be explained by a spillover from subsequent 
execution-related activity. An analysis using the estimates of planning activity from all trials yielded 
very similar results (see Figure 2—figure supplement 1), demonstrating that we could separate plan-
ning from execution-related signals.

Activity patterns are not caused by small movements during the 
preparation phase
The presence of planning-related information in primary sensorimotor regions was surprising, espe-
cially in S1, where it had not previously been reported in comparable fMRI studies (Gallivan et al., 
2016; Gallivan et  al., 2011b). To ensure that these results were not caused by overt movement, 
participants were instructed to maintain a steady force on the keyboard during the preparation phase, 
such that we could monitor even the smallest involuntary preparatory movements.

Inspection of the average force profiles (Figure  3A) revealed that participants were successful 
in maintaining a stable force between 0.2 and 0.4 N during preparation. However, averaging forces 
across trials may obscure small, idiosyncratic patterns visible during individual trials (Figure 3B) that 
could be used to distinguish the different movements. To test for the presence of such patterns, we 
submitted both the mean and standard deviation of the force traces on each finger to a multivariate 
dissimilarity analysis (see Materials and methods). Indeed, this sensitive analysis revealed that some 
participants showed small movement patterns predictive of the upcoming finger (positive behavioral 
distances in Figure 3C).

These distances, however, were ~200–300 times smaller than the average distances during execu-
tion (x-axis in Figure 3D), and we found no significant correlation between the magnitude of the 
behavioral differences for the preparation phase and the amount of planning information present in 
our sensory–motor ROIs (both p values for the slope of the linear fit >0.3 in Figure 3C). More impor-
tantly, a significantly positive intercept in the linear fit in Figure 3C (M1: p = 0.032; S1: p = 0.007) 
shows that, even after correcting for the influence behavioral patterns, the activity patterns in M1 and 
S1 remained informative (i.e., significantly positive neural distance even with no significant behavioral 
distance). Thus, the finding of finger-specific activity patterns in M1 and S1 cannot be explained by 
small involuntary movements during the preparation phase.

Single finger activity patterns from planning to execution are positively 
correlated
How do planning-related activity patterns in M1 and S1 relate to the activity patterns observed during 
execution? Neurophysiological experiments have suggested that patterns of movement preparation 

univariate contrast execution > baseline (go trials). (D) Same as B, but for the mean crossnobis distance between fingers during execution. Colorbars in 
A and C reflect mean percent signal change, whereas colorbars in B and D reflect mean crossnobis distance (arbitrary units). (E) Profile ROI analysis (see 
Materials and methods) of the mean percent signal change (± standard error of the mean [SEM]) during planning (no-go trials, orange) and execution 
(blue). The x-axis corresponds to Brodmann areas (BAs) selected from the white strip shown in the inset at the top. Horizontal bars indicate significance 
(p < 0.05) in a two-sided one-sample t-test vs zero for selected ROIs. (F) Same as E, but for the mean crossnobis distance (± SEM). Vertical dotted lines 
mark the approximate boundaries between BAs subdivisions of our main ROIs (see Materials and methods). Black triangles point to the approximate 
location of the main anatomical landmarks: Pre-CS = precentral sulcus; CS = central sulcus; Post-CS = postcentral sulcus. PMd (BA 6) = dorsal premotor 
cortex; M1 (BA 4a, 4b) = primary motor cortex; S1 (BA 3a, 3b, 1, 2) = primary somatosensory cortex; aSPL (BA 5) = anterior superior parietal lobule. For 
analogous results using the estimates of planning activity from all trials, see Figure 2—figure supplement 1. For the whole-brain maps of univariate 
and multivariate results, see Figure 2—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Activation and distance analyses using planning of both go and no-go trials. 

Figure supplement 2. Whole-brain flat surface maps (both cortical hemispheres). 

Figure 2 continued
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Figure 3. Small involuntary movements do not explain preparatory activity patterns in M1 and S1 (A). Mean finger 
force (± standard error of the mean [SEM]) plotted in 10 ms bins, time aligned to instruction onset (dotted vertical 
line) and end of the preparation phase (dashed vertical lines), separately for the three fingers and go (blue) and 
no-go (orange) trials. (B) Example of an individual trial with a 6-s preparation phase, followed six presses of the 

Figure 3 continued on next page
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are orthogonal – or uncorrelated – to the patterns underlying active movement (Kaufman et  al., 
2014). This arrangement allows movement preparation to occur without causing overt movement.

When we compared the planning- and execution-related activity patterns as measured with fMRI, 
a technique that samples neuronal activity at a much coarser spatial resolution, we found the oppo-
site result. Planning- and execution-related patterns for the same finger were tightly related. This 
can be seen already in the representational dissimilarity matrices (RDMs) that show the dissimilarity 
(crossnobis distance) for each pair of conditions (i.e., fingers 1 = thumb, 3 = middle, 5 = little for plan-
ning and execution phases).

First, the RDMs for M1 and S1 (Figure 4A) show a large difference between planning and execu-
tion patterns, which is due to the substantially higher average activation during movement compared 
to planning. This overall distance between planning and execution can also be appreciated in a three-
dimensional (3D) projection of the RDMs using multidimensional scaling (MDS) to highlight the repre-
sentational geometry between activity patterns (principal component PC1 in Figure 4B, top).

Second, within each phase, the pattern for the thumb was more distinct than those for the other 
fingers, replicating previous results from execution alone (Ejaz et  al., 2015; Yokoi et  al., 2018). 
Importantly, however, when ignoring the overall difference between the mean patterns for planning 
and execution, by looking at a rotated view of the representational geometry (Figure 4B, bottom), 
it became clear that the finger patterns were arranged in a congruent way, with planning- and 
execution-related activity patterns for the same finger being closer to one another. This representa-
tion suggested that the finger-specific patterns during planning may be a scaled-down version of the 
patterns during execution.

To test this idea more precisely, we quantified the correspondence (i.e., correlation) between 
planning and execution patterns for each finger using pattern component modeling (PCM, Died-
richsen et al., 2018). Because of the biasing influence of measurement noise, simple correlations 
between measured fMRI patterns are substantially lower than their true correlation (see http://www.​
diedrichsenlab.org/BrainDataScience/noisy_correlation). PCM corrects for this bias by evaluating the 
likelihood of the data (taking into account the measurement noise), under a range of models with a 
true correlation between 0 and 1. In other words, rather than asking which correlation value is the 
best estimate given the data, PCM asks how likely the data is given different correlation values (see 
Materials and methods for details).

The log-likelihood of the data under each model (evaluated individually for each participant and 
then averaged) is shown in Figure 4C. Across participants, the averaged maximum likelihood esti-
mate of the correlation (i.e., the average best fitting correlation model) was r = 0.83 (±0.053 standard 
error of the mean [SEM]) for M1 and r = 0.81 (±0.061 SEM) for S1 (Figure 4C, red dashed lines). By 
comparing these estimates to the zero-correlation model, we can conclude that the correlation of 
finger-specific patterns across planning and execution was significantly larger than zero in both M1 
and S1 (both t21 > 13.288, p < 1.086e−10 in a two-tailed one-sample t-test against zero). However, 
the maximum likelihood estimates of the correlation cannot be used to evaluate whether the overlap 
of these patterns was only partial (r < 1) or complete (r = 1), as the estimates are still biased due to 
measurement noise (Walther et al., 2016; Diedrichsen et al., 2018).

Therefore, in a cross-validated fashion, we compared for each participant the log-likelihood of 
the best fitting model (determined on all other participants, see Materials and methods) to the log-
likelihood under the model that the patterns are perfectly correlated (r = 1). Across participants, this 
difference was not significant for either M1 (t21 = 0.953, p = 0.176) or S1 (t21 = 0.148, p = 0.442). Given 
that no correlation model had significantly higher log-likelihoods than the 1-correlation model, we 

little finger (green). Horizontal solid line denotes press threshold (1 N). Dash-dotted lines denote the boundaries 
of the finger preactivation red area in Figure 1A (see Materials and methods). Reaction time (RT) was defined as 
the time from the go cue (dashed vertical line) to the onset of the first press (left solid vertical line). Movement time 
(MT) was defined as the time from the onset of the first press (left solid vertical line) until the release of the last 
press (right solid vertical line). (C) Pearson’s correlation (r) between behavioral and neural distances in M1 and S1 
(see Materials and methods) during the preparation phase (planning, orange). Each dot represents an individual 
participant (N = 22). Solid line shows linear regression fit; p values pairs refers to the slope and the intercept of the 
fitted line. (D) Same as C, but during the movement phase (execution, blue).

Figure 3 continued
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Figure 4. Correlated representations of single fingers across planning and execution. 
 (A) Representational dissimilarity matrices (RDMs) showing the average crossnobis distance between the activity 
patterns for digits 1 (thumb), 3 (middle), and 5 (little) during the preparation (no-go planning, orange) and 
movement (execution, blue) phases, for M1 (left) and S1(right), in the left hemisphere. (B) Two different views 
of a multidimensional scaling (MDS) plot that represents the distance between activity patterns in A as spatial 
distance in a three-dimensional (3D) coordinate system. Top, view highlighting the first principal component 

Figure 4 continued on next page
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cannot rule out that the underlying true correlation was indeed 1. In other words, we have as much 
evidence that the correspondence was only partial as we do that the correspondence was perfect. By 
comparing the best fitting correlation model to every other correlation model, we have evidence that 
the true (i.e., noiseless) correlation between planning and execution finger-specific activity pattern 
was between 0.41 and 1.0 in M1 and between 0.54 and 1.0 in S1 (Figure 4C, pink-shaded areas).

Thus, our data are consistent with the idea that, at the resolution of fMRI, the activity patterns for 
planning and execution of finger presses in S1 and M1 are either partially overlapping or even a scaled 
version of each other.

Discussion
In the present study, we asked participants to produce repeated single finger presses while under-
going 7T fMRI. We used variable preparatory delays and no-go trials to cleanly dissociate the brain 
responses to the consecutive preparation and movement phases. We found that information about 
planned finger actions is present in both S1 and M1 before action onset, even though the overall level 
of activation in these regions was below resting baseline. Moreover, while execution elicited much 
higher brain activation, the fine-grained, finger-specific activity patterns were highly similar across 
planning and execution. Control analyses confirmed that the observed results were not caused by 
premovement finger activity.

Our finding that motor planning activates M1 in a finger-specific fashion was not necessarily 
surprising given many neurophysiological studies reporting anticipatory activity of M1 neurons related 
to movement intentions (Tanji and Evarts, 1976; Riehle and Requin, 1989; Alexander and Crutcher, 
1990), as well as human neuroimaging showing shared information between delayed and immediate 
movement plans (Ariani et al., 2018). In contrast, the robust activity patterns related to single finger 
planning in S1 were more surprising, given that this region has classically been associated with the 
passive processing of somatosensory information from receptors in the skin, muscles, and tendons.

So, what could then be the role of S1 during movement planning? First, it is worth noting that there 
are substantial projections from S1 (BA 3a) that terminate in the ventral horn of the corticospinal tract 
(Coulter and Jones, 1977; Rathelot and Strick, 2006). Although stimulation of area 3a in macaques 
typically fails to evoke overt movements (Widener and Cheney, 1997), it has been suggested that 
this population of corticomotoneurons specifically projects to gamma motoneurons that control the 
sensitivity of muscle spindle afferents (Rathelot and Strick, 2006). Thus, it is possible that S1 plays an 
active role in movement generation by preparing the spindle apparatus in advance of the movement.

Second, the finger-specific preparatory state in S1 may reflect the prediction of the upcoming 
sensory stimulation, allowing for a movement-specific sensory gain control (Azim and Seki, 2019). It is 
likely that, this process is also accompanied by an allocation of attention to the cued finger. However, 
as voluntary (Gallivan et al., 2011a; Gallivan et al., 2011b) planning requires attention, our current 
dataset cannot distinguish between the two possibilities. Sensory stimuli could become attenuated 
to maintain movement stability and filter out irrelevant or self-generated signals. Indeed, multiple 
studies have shown that both somatosensation and somatosensory-evoked potentials in S1 decrease 
during voluntary movement (Starr and Cohen, 1985; Chapman et al., 1987; Jiang et al., 1990; Seki 
and Fetz, 2012). Alternatively, sensory processing of the expected salient signals could be enhanced 
to improve movement execution.

(PC1, difference in average activation between planning and execution). Bottom, rotated view highlighting the 
correspondence between representational geometries across planning and execution visible on PC2 and PC3. 
The black cross denotes the mean pattern across conditions. (C) Pattern component modeling (PCM) evaluation of 
models (x-axis) of different correlations between planning- and execution-related activity patterns. Shown in dark 
gray is the group average of the individual log-likelihood (± standard error of the mean [SEM] across participants) 
curves expressed as a difference from the mean log-likelihood across models (i.e., zero on the y-axis). Red dots 
indicate the best fitting correlation model for each participant (N = 22). Red dashed lines denote the average 
winning (i.e., best fitting) models across participants. Gray-shaded areas indicate models that perform statistically 
worse (p < 0.05) than the best fitting correlation model (determined in a cross-validated fashion, see Materials 
and methods). Pink-shaded areas indicate models that do not perform significantly worse than the best fitting 
correlation model (p ≥ 0.05).

Figure 4 continued
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While several previous fMRI studies did not find action-specific encoding in S1 during planning 
(Gallivan et al., 2011a; Gallivan et al., 2011b, Gallivan et al., 2016; Gallivan et al., 2013), concur-
rently with our study a second paper found movement-specific modulation of S1 preparatory activity 
(Gale et al., 2021). Together, these two papers provide convergent evidence that motor planning 
triggers notable changes in the neural state of the somatosensory system and that such changes can 
be detected with fMRI in humans.

The second important finding in our paper was the close correspondence between finger-specific 
activity patterns across planning and execution – which appears to be at odds with the idea that 
these two processes occupy orthogonal neural subspaces to avoid overt movement during planning 
(Kaufman et al., 2014; Elsayed et al., 2016). We think that there are at least two possible explana-
tions for this. First, the divergence of results could be caused by the difference in behavioral para-
digms. While the neuronal correlates of movement planning in nonhuman primates have largely been 
studied using upper limb movements, we used here individuated finger presses. If for single finger 
actions even single-neuron activity patterns are highly correlated between planning and execution, 
then overt movement during planning would need to be actively suppressed, for example through the 
deactivation that we observed around the central sulcus.

An alternative and perhaps more likely explanation of the discrepancy lies in the different measure-
ment modalities. Orthogonality was observed in electrophysiological recordings of individual neurons, 
whereas the fMRI measurements we employed here mainly reflect excitatory postsynaptic potentials 
(Logothetis et al., 2001) and average metabolic activity across hundreds of thousands of cortical 
neurons. Thus, it is possible that planning preactivates the specific cortical columns in M1 and S1 
that are also most active during movement of that finger. Within each of these cortical microcircuits, 
however, planning-related activity could still be orthogonal to the activity observed during execution 
at the single-neuron level (e.g., see Arbuckle et al., 2020, for a similar observation for cortical repre-
sentations of flexion and extension finger movements). This would suggest a new hypothesis for the 
architecture of the sensory–motor system where movement planning preactivates the action-specific 
circuits in M1 and S1. However, it does so in a fashion that the induced planning-related activity is, in 
terms of the firing output of neurons, orthogonal to the patterns during execution.

Materials and methods
Participants
Twenty-three right-handed neurologically healthy participants volunteered to take part in the experi-
ment (13 F, 10 M; age 20–31 years, mean 23.43 years, SD 4.08 years). Criteria for inclusion were right-
handedness and no prior history of psychiatric or neurological disorders. Handedness was assessed 
with the Edinburgh Handedness Inventory (mean 82.83, SD 9.75). All experimental procedures were 
approved by the Research Ethics Committee at Western University (HSREB 107061). Participants 
provided written informed consent to procedures and data usage and received monetary compensa-
tion for their participation. One participant withdrew before study completion and was excluded from 
data analysis (final N = 22).

Apparatus
Repeated right-hand finger presses were performed on a custom-made MRI-compatible keyboard 
device (Figure 1A). Participants only used the tips of their fingers to press on the keys. The keys of the 
device did not move but force transducers underneath each key measured isometric force production 
at an update rate of 2 ms (Honeywell FS series; dynamic range 0–25 N; sampling 200 Hz). A keypress/
release was detected when the force crossed a threshold of 1  N. The forces measured from the 
keyboard were low pass filtered to reduce noise induced by the MRI environment, amplified, and sent 
to PC for online task control and data recording.

Task
We used a task in which participants produced repeated keypresses with the tip of their right-hand 
fingers in response to numerical cues appearing on a computer screen (white outline, Figure 1A). On 
each trial, a string of six numbers (instructing cue) instructed which finger press to plan (1 = thumb, 3 
= middle, 5 = little).

https://doi.org/10.7554/eLife.69517
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The length of the preparation phase (yellow background in Figure 1) was randomly sampled to 
be 4 s (56% of trials), 6 s (30%), or 8 s (14%). To limit and monitor unwanted movements during the 
preparation phase, we required participants to preactivate their fingers by maintaining a steady force 
of around 0.2–0.3 N on all of the keys during the preparation phase. As a visual aid, we displayed a 
red area (between 0 and 0.5 N) and asked participants to remain in the middle of that range with all 
the fingers (touching either boundary of the red area would count as unwanted movement, thus incur-
ring an error). We preferred this technique over using electromyography (EMG) recordings to monitor 
micromovements during the preparation phase because extensive pilot experiments for our studies 
of ipsilateral representations (Diedrichsen et al., 2013) and mirroring (Ejaz et al., 2018) showed that 
force fluctuations from preactivated hand muscles provide a more sensitive readout of involuntary 
muscle activations compared to EMG signals acquired during fMRI.

At the onset of the movement phase (green background), participants received a color cue (go/
no-go cue) indicating whether to perform the planned finger presses (blue outline = go, p = 0.6), or 
not (orange outline = no-go, p = 0.4). The role of no-go trials was to decouple the hemodynamic 
response to the successive planning and execution events, which would otherwise always overlap in 
fast fMRI designs due to the sluggishness of the fMRI response (Ariani et al., 2018).

To encourage planning during the delay period, at the go cue the digits were masked with aster-
isks, and participants had to perform the presses from memory. Participants had 2.5 s to complete 
the movement phase, and a vanishing white bar under the asterisks indicated how much time was left 
to complete all of the keypresses. Participants received online feedback on the correctness of each 
press with asterisks turning either green, for a correct press, or red, for incorrect presses. As long 
as the participants remained within task constraints (i.e., six keypresses in less than 2.5 s), an exact 
movement speed was not enforced. In no-go trials, participants were instructed to remain as still as 
possible maintaining the finger preactivation until the end of the movement phase (i.e., releasing any 
of the keys would incur an error).

During the reward phase (0.5 s, purple background) points were awarded based on performance 
and according to the following scheme: −1 point in case of no-go error or go cue anticipation (timing 
errors); 0 points for pressing any wrong key (press error); 1 point in case of a correct no-go trial; and 
2 points in case of a correct go trial.

Intertrial intervals (ITI, gray background) were randomly drawn from {1, 2, 4, 8, 16  s} with the 
respective proportion of trials {0.52, 0.26, 0.13, 0.6, 0.3}.

Experiment design and structure
Our chosen distribution of preparation times, ITIs, and no-go trials, was determined by minimizing the 
variance inflation factor (VIF) for a given length of scan:

	﻿‍
VIF = var

(
E
)

var
(

X
)
‍�

where var(E) is the mean estimation variance of all the regression weights (planning- and execution-
related regressors for each finger), and var(X) the mean estimation variance had these regressors been 
estimated in isolation. The VIF quantifies the severity of multicollinearity between model regressors 
by providing an index of how much the variance of an estimated regression coefficient is increased 
because of collinearity. Large values for VIF mean that model regressors are not independent of each 
other, whereas a VIF of 1 means no inflation of variance. After optimizing the design, the VIF was 
quite low, on average around 1.15, indicating that we could separate planning- and execution-related 
activity without a large loss of experimental power.

Participants underwent one fMRI session consisting of 10 functional runs and 1 anatomical scan. 
In an event-related design, we randomly interleaved three types of repeated single finger presses 
involving the tip of the thumb (1), the middle (3), and the little (5) fingers (e.g., 111,111 for thumb 
presses, Figure 1A) and three types of multifinger sequences (e.g., 135,315).

The day before the fMRI scan, participants familiarized themselves with the experimental appa-
ratus and the go/no-go paradigm in a short behavioral session of practice outside the scanner (five 
blocks, about 15–30 min in total). This short training made the requirement of maintaining a steady 
force on all keys during the preparation phase very easy. In fact, the system was calibrated so that the 
natural weight of the hand on the keys was enough to bring the finger forces within the correct range 

https://doi.org/10.7554/eLife.69517


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Ariani et al. eLife 2022;11:e69517. DOI: https://​doi.​org/​10.​7554/​eLife.​69517 � 13 of 20

to be maintained. Thus, it is likely that little online control was required by the participants before 
pressing the keys.

For the behavioral practice, ITIs were kept to a fixed 1 s to speed up the task, and participants 
were presented with different sequences from what they would see while in the scanner. These six-
item sequences were randomly selected from a pool of all possible permutations of the numbers 1, 
3, and 5, with the exclusion of sequences that contained consecutive repetitions of the same number. 
Given that the current paper is concerned with the relationship between representations of simple 
planning and execution, here we will focus only on the results for single finger actions. The results for 
multifinger sequences are intended for publication in a future paper.

Each single finger trial type (e.g., 111,111) was repeated five times (two no-go and three go trials), 
totaling 30 trials per functional run. Two periods of 10 s rests were added at the beginning and at 
the end of each functional run to allow for signal relaxation and provide a better estimate of baseline 
activation. Each of the 10 functional runs took about 5.5 min and the entire scanning session (including 
the anatomical scan and setup time) lasted for about 75 min.

Imaging data acquisition
High-field fMRI data were acquired on a 7T Siemens Magnetom scanner with a 32-channel head coil 
at Western University (London, Ontario, Canada). The anatomical T1-weighted scan of each partic-
ipant was acquired halfway through the scanning session (after the first five functional runs) using a 
Magnetization-Prepared Rapid Gradient Echo sequence (MPRAGE) with voxel size of 0.75 × 0.75 × 
0.75 mm isotropic (field of view = 208 × 157 × 110 mm [A–P, R–L, F–H], encoding direction coronal). 
To measure the blood-oxygen-level-dependent responses in human participants, each functional scan 
(330 volumes) used the following sequence parameters: GRAPPA 3, multiband acceleration factor 2, 
repetition time (TR) = 1.0 s, echo time (TE) = 20 ms, flip angle (FA) = 30°, slice number: 44, voxel size: 
2 × 2 × 2 mm isotropic. To estimate and correct for magnetic field inhomogeneities, we also acquired 
a gradient echo field map with the following parameters: transversal orientation, field of view: 210 × 
210 × 160 mm, 64 slices, 2.5 mm thickness, TR = 475 ms, TE = 4.08 ms, FA = 35°.

Preprocessing and univariate analysis
Preprocessing of the functional data was performed using SPM12 (fil.ion.ucl.ac.uk/spm) and custom 
MATLAB code. This included correction for geometric distortions using the gradient echo field map 
(Hutton et al., 2002), and motion realignment to the first scan in the first run (three translations: x, y, 
z; three rotations: pitch, roll yaw). Due to the short TR, no slice timing corrections were applied. The 
functional data were coregistered to the anatomical scan, but no normalization to a standard template 
or smoothing was applied. To allow magnetization to reach equilibrium, the first four volumes of each 
functional run were discarded. The preprocessed images were analyzed with a general linear model 
(GLM). We defined separate regressors for each combination of the six finger actions (single, multi) 
× two phases (preparation, movement). To control for the effect of potential overlap between execu-
tion activity and the preceding planning activity, we also estimated a separate GLM with separate 
regressors for the preparation phases of go and no-go trials, resulting in a total of 18 regressors (12 
go + 6 no-go), plus the intercept, for each run. Each regressor consisted of a boxcar function (on for 
2 s of each phase duration and off otherwise) convolved with a two-gamma canonical hemodynamic 
response function with a peak onset at 5 s and a poststimulus undershoot minimum at 10 s (Figure 1B).

Given the relatively low error rates (i.e., number of error trials over total number of trials, timing 
errors: 7.58 ± 0. 62%; press errors: 1.18 ± 0.26%, see Task), all trials were included to estimate the 
regression coefficients, regardless of whether the execution was correct or erroneous. Ultimately, the 
first-level analysis resulted in activation images (beta maps) for each of the 18 conditions per run, for 
each of the participants.

Surface reconstruction and ROI definition
Individual subject’s cortical surfaces were reconstructed using Freesurfer (Dale et al., 1999). First, we 
extracted the white-gray matter and pial surfaces from each participant’s anatomical image. Next, 
we inflated each surface into a sphere and aligned it using sulcal depth and curvature information 
to the Freesurfer average atlas (Fischl et al., 1999). Both hemispheres in each participant were then 

https://doi.org/10.7554/eLife.69517
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resampled into Workbench’s 164 k vertex grid. This allowed us to compare similar areas of the cortical 
surface in each participant by selecting the corresponding vertices on the group atlas.

Anatomical ROIs were defined using a probabilistic cytoarchitectonic atlas (Fischl et  al., 2008) 
projected onto the common group surface. Our main ROIs were defined bilaterally as follows: primary 
motor cortex (M1) was defined by including nodes with the highest probability of belonging to BAa 
4a and 4b, within 2 cm above and below the hand knob anatomical landmark (Yousry et al., 1997); 
primary somatosensory cortex (S1) was defined by the nodes related to BA 1, 2, 3a, and 3b; PMd was 
defined at the junction between the superior frontal sulcus and the precentral sulcus (BA 6); finally, the 
anterior part of the superior parietal lobule (aSPL, BA 5) included areas anterior, superior, and ventral 
to the intraparietal sulcus. ROI definition was carried out separately in each subject using FSL’s subcor-
tical segmentation. When resampling functional onto the surface, to avoid contamination between 
M1 and S1 activities, we excluded voxels with more than 25% of their volume in the gray matter on 
the opposite side of the central sulcus.

Multivariate distance analysis
To detect single finger representations across the cortical surface, we used representational similarity 
analysis (RSA; Diedrichsen and Kriegeskorte, 2017; Walther et  al., 2016) with a surface-based 
searchlight approach (Oosterhof et al., 2011). For each node, we selected a region (the searchlight) 
corresponding to 100 voxels (12 mm disc radius) in the gray matter and computed cross-validated 
Mahalanobis (crossnobis, Walther et  al., 2016) dissimilarities between pairs of evoked activity 
patterns (beta estimates from first-level GLM) of single finger sequences, during both preparation and 
movement phases.

Prior to calculating the dissimilarities, beta weights for each condition were spatially prewhitened 
that is weighted by the matrix square root of the noise covariance matrix estimated from the residuals 
of the GLM. The noise covariance matrix was slightly regularized toward a diagonal matrix (Ledoit 
and Wolf, 2004). Multivariate prewhitening has been shown to increase the reliability of dissimilarity 
estimates (Walther et al., 2016). The dissimilarity was then computed by multiplying the difference 
between two conditions patterns with the pattern difference for the same conditions of any other 
run, and then averaging over all runs and voxels. This resulted in 15 dissimilarities between the 6 
conditions (3 single fingers, separately for planning and execution), which can be visualized as a 6 × 6 
RDM (Figure 4A). An alternative visualization can be obtained using classical MDS, which shows the 
six conditions as points projected into the 3D space spanned by the eigenvectors of the patterns that 
were associated with the three largest eigenvalues (i.e., the three principal components).

For the searchlight analysis, we assigned the average distance between any of the three planning 
conditions to the central node of the searchlight. The region was then moved across all nodes across 
the surface sheet obtaining a cortical map (Figure 2B). An equivalent analysis was conducted for the 
execution patterns (Figure 2D). Cross-validation ensures the distances estimates are unbiased, such 
that if two patterns differ only by measurement noise, the mean of the estimated value would be zero. 
This also means that estimates can sometimes become negative. Therefore, dissimilarities significantly 
larger than zero indicate that two patterns are reliably distinct, similar to an above-chance perfor-
mance in a cross-validated pattern-classification analysis.

The searchlight analysis was mainly used for visualization purposes. Additionally, we conducted 
the multivariate analysis separately for each anatomically defined ROI (e.g., Figure  4A). For the 
profile ROI analysis (both univariate and multivariate, e.g., Figure 2E, F), we defined 50 rectangular 
surface-based searchlights in each hemisphere that covered the virtual strip shown in the top inset of 
Figure 2 and that were aligned to the boundaries between different ROI subdivisions. Based on these 
surface-based searchlights, we defined the voxel-based subdivisions in individual brains. For statistical 
comparisons, these subdivisions were successively grouped by averaging within-ROI subdivisions (see 
Figure 2E, F). This approach allowed us to compute both ROI-level statistical comparisons and the 
analysis of the ratio of distances in the different subdivisions of our main ROIs (e.g., M1 into BA4a and 
BA4b). Statistical comparisons consisted of two-sided one-sample t-test vs zero for selected ROIs.

https://doi.org/10.7554/eLife.69517
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Correlation between behavioral and neural distances
To ensure that our planning results were not contaminated by unwanted micromovements during the 
preparation phase, we calculated the behavioral distance between the different fingers on the basis 
of keyboard force data and correlated behavioral and neural distances.

For behavioral distances, we first extracted force data (2-ms temporal resolution, smoothed with a 
Gaussian kernel of 9.42 full width at half maximum, FWHM) and binned it in 10 ms steps (downsam-
pling largely due to memory constraints) for both the preparation and movement phases (Figure 3A). 
Next, for each subject, we calculated the mean (5) and the standard deviation (5) of the time-averaged 
force of each finger for each condition (3 sequences × 2 phases = 6) and block (10). These subject-
specific finger force patterns (60 × 10) were multivariately prewhitened using their covariance matrix. 
Finally, we calculated the cross-validated squared Euclidean distances for each condition (6 × 6 RDM) 
and averaged distances between the three finger presses for each phase (preparation, movement).

These mean finger force distances for each subject were correlated with the mean voxel activity 
distances from the two phases for two ROIs (M1 and S1, Figure 3C,D). To statistically assess that the 
neural distances were still significantly larger than zero even in the absence of behavioral distances, 
we computed the pvalue for the intercept of the linear fit.

PCM correlation models
Visual inspection of the RDM and MDS plots (Figure 4A, B) suggested that the finger-specific activity 
patterns during planning and execution might be arranged in a congruent fashion. This correspon-
dence can be assessed by determining the correlation between the planning and execution activity 
patterns for matching fingers (i.e., planning finger 1 with executing finger 1), after accounting for the 
average activity pattern for planning and execution across fingers.

The problem with simple Pearson’s correlations or cross-validated correlations is that these 
measures are biased by noise. Even if the patterns for planning and execution were perfectly 
correlated (i.e., a scaled version of each other), the empirical correlation estimates would not be one 
(see http://www.diedrichsenlab.org/BrainDataScience/noisy_correlation). Therefore, we used (PCM 
Diedrichsen et  al., 2018, openly available at github.com/DiedrichsenLab/PcmPy; copy archived 
at swh:1:rev:076b9a685ed116b1f0b83a68a0955d0cc5323a42, Ariani, 2022) to generate different 
models, each assuming a specific correlation between planning and execution patterns on the interval 
between 0 and 1 in steps of 0.01. We then computed the log-likelihood of the observed data (Y, the 6 
activation patterns observed in 10 runs) from each participant under each correlation model (r): ‍p

(
Y|r

)
‍ 

, which is plotted in Figure 4C. PCM assumes that both the true activity patterns and the measure-
ment noise are randomly distributed with a multivariate Gaussian distribution. The likelihood of the 
data under each model can then be analytically evaluated (for details see Diedrichsen et al., 2011; 
Diedrichsen et al., 2018; Diedrichsen et al., 2021). This likelihood depends only on the covariance 
matrix of the measured activity patterns and the predicted covariance matrix from the model. (Note: 
more precisely it relies on the measured and the predicted second moment matrix, as we do not 
subtract out the mean of each pattern across voxels.) Like RSA, PCM therefore abstracts away from 
the actual activity patterns, as it only depends on the relationship between the patterns, but does not 
have to model the pattern themselves. In fact, there is a 1:1 relationship between the second moment 
matrix used in PCM and the RDM used in RSA (Diedrichsen and Kriegeskorte, 2017). In both cases, 
the correlation between two conditions (e.g., planning and execution, for each finger) can be seen as 
the diagonal of the off-diagonal block of this matrix. The approach is also equivalent to an encoding 
model estimated with Ridge regression (Diedrichsen and Kriegeskorte, 2017), with the advantage 
that it can be estimated in closed form without fallback on cross-validation.

Here, we used 100 PCM correlation models with correlations in the range [0–1] in equal step sizes. 
The number of correlation models was chosen arbitrarily—ultimately, it only determines the amount 
of correlation values tested (i.e., the resolution on the x-axis in Figure 4C). By exploring the entire 
log-likelihood function across different correlations models, this approach allows us to test specific 
hypothesis even if the signal-to-noise level is low.

Apart from a fixed correlation, each model contained five free parameters, each describing the vari-
ance of specific pattern component. The first two parameters captured the variance of the common 
pattern for all execution patterns and the variance of the common pattern for all planning patterns. 
Together, these two components captured the overall difference between planning and execution. 

https://doi.org/10.7554/eLife.69517
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The next two parameters captured the variance associated with the three fingers under the two condi-
tions. Finally, the noise parameter determined the variance of the measurement noise. Because all 
correlation models had the same number of parameters, we simply maximized the likelihood for each 
correlation model in respect to these parameters.

The curve in Figure 4C shows the average log-likelihood for each correlation model (100 models 
from 0 to 1 in equal steps sizes), relative to the mean log-likelihood across models (zero on the y-axis). 
Differences between the log-likelihoods can be interpreted as log-Bayes factors. Group inferences 
were performed using a simple t-tests on the log-likelihoods.

To compare specific models to the best fitting model, we had to correct for the bias arising from 
picking the best model and testing it on the same data. Therefore, we used N − 1 subjects to deter-
mine the group winning model, and then chose the log-likelihood of this model for the left-out subject 
(for whom this model may not be the best one) as the likelihood for the ‘best’ model. This was 
repeated across all subjects and a one-sided paired-sample t-test was performed on the recorded 
log-likelihood and every other model.

This test revealed which of the correlation models were significantly worse (i.e., associated with a 
lower log-likelihood) than the winning model that was independently estimated via cross-validation 
(gray-shaded area in Figure 4C).

In sum, PCM has the advantage over alternative approaches in that it provides stable inferences 
even for noisy data, offering an optimal evaluation (in the likelihood sense) of the real evidence 
present in the data about the true correlation between two activity patterns. For technical imple-
mentation details of PCM, including a full example of PCM correlation models, see the documents of 
the openly available toolbox written in Python (pcm-toolbox-python.readthedocs.io/en/latest/demos/​
demo_correlation.html).
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