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Abstract 19 

 20 

We investigated motor skill learning using a path tracking task, where human subjects had to 21 

track various curved paths at a constant speed while maintaining the cursor within the path 22 

width. Subjects’ accuracy increased with practice, even when tracking novel untrained paths. 23 

Using a “searchlight” paradigm, where only a short segment of the path ahead of the cursor 24 

was shown, we found that subjects with a higher tracking skill differed from the novice 25 

subjects in two respects. First, they had lower movement variability, in agreement with 26 

previous findings. Second, they took a longer section of the future path into account when 27 

performing the task, i.e. had a longer planning horizon. We estimate that between one third 28 

and one half of the performance increase in the expert group was due to the longer planning 29 

horizon.  An optimal control model with a fixed horizon (receding horizon control) that 30 

increases with tracking skill quantitatively captured the subjects’ movement behaviour. These 31 

findings demonstrate that human subjects not only increase their motor acuity but also their 32 

planning horizon when acquiring a motor skill.  33 
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New and Noteworthy 34 

 35 

We show that when learning a motor skill humans are using information about the 36 

environment from an increasingly longer amount of the movement path ahead to improve 37 

performance. Crucial features of the behavioural performance can be captured by modeling 38 

the behavioural data with a receding horizon optimal control model.  39 
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Introduction 40 

 41 

The human motor system can acquire a remarkable array of motor skills. Informally, a person 42 

is said to be “skilled” if he or she can perform faster and at the same time more accurate 43 

movements than other, unskilled, individuals. What we don't know, however, is what learning 44 

processes and components underlie our ability to move better and faster.  One component 45 

may be relatively “cognitive”, involving the faster and more appropriate selection and 46 

planning of upcoming actions (Diedrichsen and Kornysheva 2015; Wong et al. 2015). 47 

Another component may be related to motor execution – the ability to produce and finely 48 

control difficult combinations of muscle activations, also called “motor acuity” (Shmuelof et 49 

al. 2012; Waters-Metenier et al. 2014). Depending on the structure of the task, changes in 50 

visuo-motor processing or feedback control may also contribute to skill development. Motor 51 

adaptation extensively studied using visuomotor and force perturbations (Shadmehr et al. 52 

2010), may play a certain role in stabilizing performance, but it cannot by itself lead to 53 

improvements in the speed-accuracy trade-off (Wolpert et al. 2011). 54 

 55 

A task commonly used in the experiments on motor skill learning is sequential finger tapping, 56 

where subjects are asked to repeat a certain tapping sequence as fast and as accurately as 57 

possible (Karni et al. 1995, 1998; Petersen et al. 1998; Walker et al. 2002). Improvement in 58 

such a task can continue over days, but previous papers have focussed mostly on the learning 59 

that is specific to the trained sequence(s) (Karni et al. 1995). 60 

 61 

Many real-world tasks, however, do not involve the production of a fixed sequence of motor 62 

commands, but the flexible planning and execution of movements. Such flexibility is often 63 

well described by optimal feedback control models (Braun et al. 2009; Diedrichsen et al. 64 
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2010; Todorov and Jordan 2002) where the skilled actor appears to compute “on the fly” the 65 

most appropriate motor command for the task at hand. This requires demanding computations 66 

(Todorov and Jordan 2002), and the human motor system likely has found heuristics to deal 67 

with this complexity. One way to reduce complexity of the control problem is to not optimize 68 

the whole sequence of motor commands that will achieve the ultimate goal, but to only 69 

optimise the current motor command for a short distance into the future. This idea is called 70 

receding horizon control, also known as model predictive control (Kwon and Han 2005). 71 

Under this control regime, the system computes a feedback control policy that is optimal for a 72 

finite planning horizon. The control policy is then continuously updated as the movement 73 

goes on and the planning horizon is being shifted forward. This allows for adaptability, e.g. it 74 

can flexibly react to perturbations or unexpected challenges, as sensory information becomes 75 

available. Recent studies provided indirect evidence that favour the optimisation of short 76 

time-periods of a motor command (Dimitriou et al. 2013). The notion of planning horizon 77 

also arises in reinforcement learning, e.g. in the context of the so-called successor 78 

representation (Momennejad et al. 2017). 79 

 80 

Motivated by these ideas, we propose that some of the skill of a down-hill skier or a race-car 81 

driver may lie not only in the increased ability to execute difficult motor commands (e.g. due 82 

to increased motor acuity), but also in the ability to plan further ahead and to optimize the 83 

movements for a longer time period into the future. In addition, we propose that the time span 84 

that subjects plan ahead increases with experience, leading to an increasing performance with 85 

training. 86 

 87 

To test this idea, we designed an experimental condition which would allow us to measure 88 

the planning horizon that skilled actors are using when executing long sequence of 89 

Downloaded from journals.physiology.org/journal/jn at Univ Western Ontario (174.119.147.061) on February 24, 2022.



 

Page 6 of 38 

 

movements that need to be planned “on the fly” – i.e. where the actual sequence of 90 

movements cannot be memorized. For this, we developed a path tracking task, where subjects 91 

had to maintain their cursor within a path that was moving towards them at a fixed speed. A 92 

similar task has been previously used in motor control research (Poulton 1974), using a 93 

mechanical apparatus with paths drawn on a paper roll that was moving at a fixed speed. It 94 

has been shown that subjects are able to increase their accuracy with training, but the 95 

different computational strategies between expert subjects and naïve performers remain 96 

unclear. In our study we use ‘searchlight’ trials in which subjects see various lengths of the 97 

approaching path ahead of their cursor to probe subjects forward planning and compare 98 

experts and novices in this respect. 99 

  100 

Downloaded from journals.physiology.org/journal/jn at Univ Western Ontario (174.119.147.061) on February 24, 2022.



 

Page 7 of 38 

 

Materials and Methods 101 

 102 

Subjects 103 

62 experimentally naïve subjects took part in this experiment (33 males and 29 females, age 104 

range 20-52 years old). Subjects gave written informed consent and were paid 10 €/h. The 105 

experimental procedures received ethics approval from the University of Freiburg. 106 

 107 

Setup 108 

Subjects sat at a desk looking at a computer monitor (Samsung Syncmaster 226BW) located 109 

~80cm away. A cursor displayed on the screen (Matlab and Psychophysics Toolbox Version 110 

3 (Brainard 1997)) was under position control by movements of a computer mouse. The 111 

mouse could be moved on the desk in all directions but only the horizontal (left and right) 112 

component contributed to the cursor movement: the vertical position of the cursor was fixed 113 

at 5.7mm above the base of the screen. 114 

 115 

Task 116 

To begin each trial subjects had to press the space bar. This displayed the cursor (R=2.9mm, 117 

1.1cm from the bottom of the screen) and the path (width = 2.83cm) that extended from the 118 

top to bottom of the screen (30cm). The path continuously moved downward on the screen at 119 

a vertical speed of 34.1cm/s. The initially visible path was a straight line centered in the 120 

middle of the screen with the cursor positioned in the middle of the path. Once this initial 121 

section moved through the screen, the path then followed a random curvature (Fig. 1A). 122 

Subjects were instructed to keep the cursor between the path borders at all times moving only 123 

in the horizontal plane and were told to be as accurate as possible. The cursor and path were 124 
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displayed in white if the cursor was within the path and both turned red when it was outside 125 

the path, always on a black background. 126 

 127 

The cursor position was sampled at 60 Hz and the tracking accuracy was defined for each 128 

trial as the percentage of time steps when the cursor was inside the path. Running accuracy 129 

values were continuously displayed in the top left corner of the screen and final accuracies 130 

were displayed between the trials. 131 

 132 

This experiment is based on a previous version where subjects were asked to track static 133 

randomly curved paths in 2D as quickly as possible without touching the sides [unpublished 134 

data, (Bashford et al. 2014)]. We later found that the 1D paradigm presented here was better 135 

suited to study the planning horizon as the speed was fixed. 136 

Paradigm 137 

Subjects were randomly assigned into two groups: expert (N=32) and naive (N=30). The 138 

paradigm included a training (expert group only) and a testing (all subjects) phase. Subjects 139 

in the expert group trained over 5 consecutive days, each day completing 30 minutes of path 140 

tracking (10 of 3-minute trials with short breaks in-between, searchlight length (s) 100%). If 141 

the performance improved from one trial to the next subjects saw a message saying 142 

“Congratulations! You got better! Keep it up!”, otherwise the message “You were worse this 143 

time! Try to beat your score!” was shown. The training paths were randomly generated on the 144 

fly. Experts performed the testing set of trials after a short break following training on the 145 

final (5th) day. Naïve subjects performed only the testing set of trials. 146 

 147 

The testing phase lasted 30 min (30 of 1-minute trials with breaks in-between) using 30 148 

different pre-generated paths that were the same for all subjects. The testing phase in this 149 
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experiment contained 3 normal trials (s=100%) and 27 searchlight trials (s=10-90%) where 150 

some upper part of the path was not visible. Three blocks of 10 trials with the searchlight 151 

length ranging from s=10% to s=100% (in steps of 10%) were presented, with the order 152 

shuffled in each block; the same fixed pseudorandom sequence was used for all subjects. 153 

 154 

Path generation 155 

Paths were generated before each trial start during training and a pre-generated fixed set was 156 

produced in the same way for testing. Each path was initialized to start at the bottom middle 157 

of the screen and the initial 30 cm of each path were following a straight vertical line. 158 

Subsequent points of the path midline had a fixed Y step of 40 pixels (1.1 cm) and random 159 

independent and identically distributed (iid) X steps drawn from a uniform distribution from 160 

1 to 80 pixels (2.7mm – 2.2cm). Any step that would cause the path to go beyond the right or 161 

left screen edges was recalculated. The midline was then smoothed with a Savitzky-Golay 162 

filter (12th order, window size 41) and used to display path boundaries throughout the trial. 163 

All of the above parameters were determined in pilot experiments to create paths which were 164 

very hard but not impossible to complete after training. 165 

 166 

Statistical analysis 167 

In all cases, we used nonparametric rank-based statistical tests to avoid relying on the 168 

normality assumption. In particular, we used Spearman’s correlation coefficient instead of the 169 

Pearson’s coefficient, Wilcoxon signed-rank test instead of paired two-sample t-test, and 170 

Wilcoxon-Mann-Whitney rank sum test instead of unpaired two-sample t-test. 171 

 172 
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We initially recorded N=10 subjects in each group and observed statistically significant 173 

(p<0.05) effect that we are reporting here: positive correlation between the asymptote 174 

performance and the horizon length, as estimated via the changepoint and exponential 175 

models. We then recorded another N=20/22 (naïve/expert) subjects per group to confirm this 176 

finding. This internal replication confirmed the effect (p<0.05). The final analysis reported in 177 

this study was based on all N=62 subjects together. A preliminary version of the analysis for 178 

the initial N=10/10 subjects can be found in our preprint (Bashford et al. 2014), but note that 179 

it used a different way to estimate planning horizon compared to the procedure presented 180 

here, and so the values are not directly comparable. 181 

 182 

Changepoint and Exponential model 183 

We used two alternative models to describe the relationship between the searchlight length 184 

and the accuracy: a linear changepoint model and an exponential model. We used two 185 

different models to increase the robustness of our analysis and both models support our 186 

conclusions. 187 

 188 

The changepoint model is defined by 189 

𝑦 ൌ ൜
c𝑠  𝑜             if 𝑠  ℎ

cℎ  𝑜         if 𝑠  ℎ
 

where y is the subject’s performance, s the searchlight length and (c, o, hcp) are the subject-190 

specific parameters of the model which define the baseline performance at searchlight 0% 191 

(o), the amount of increase of performance with increasing searchlight (c) and the planning 192 

horizon (hcp) after which the performance does not increase any further. 193 

 194 

The exponential model is defined by 195 
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𝑦 ൌ 𝜓 െ exp ሺെ𝜌𝑠  𝑑ሻ 

where the subject-specific parameters (𝜓, d, 𝜌) specify the performance at searchlight 0% 196 

(𝜓 െ exp ሾ𝑑ሿ), the asymptote for large searchlights (𝜓) and the speed of performance increase 197 

(𝜌). 198 

This function monotonically increases but it never plateaus. The speed of the increase 199 

depends on the parameter 𝜌 with larger values meaning faster approaching the asymptote. We 200 

used the following quantity as a proxy for the “effective” planning horizon: 10+log(5)/𝜌. It 201 

can be understood as the searchlight length that leads to performance being five times closer 202 

to the asymptote than at s=10%. The log(5) factor was chosen to yield horizon values of 203 

roughly the same scale as with the changepoint model above. 204 

 205 

Both models (changepoint and exponential) were fit to the raw performance data of each 206 

subject, i.e. to the 30 data points, 3 for each of the 10 searchlight length values. The 207 

exponential fit (see Equation 2 in the Results) was done with the Matlab's nlinfit() function, 208 

implementing Levenberg-Marquardt nonlinear least squares algorithm. The changepoint fit 209 

(see Equation 1 in the Results) was done with a custom script that worked as follows. It tried 210 

all values of hcp on a grid that included s=10% and then went from s=20% to s=100% in 100 211 

regular steps. For each value of hcp the other two parameters can be found via linear 212 

regression after replacing all s>hcp values with hcp. We then chose hcp that led to the smallest 213 

squared error. 214 

 215 

Trajectory analysis 216 

To shed light on the learning process we analysed additional parameters of the subjects’ 217 

movement trajectories. 218 

 219 
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First, we computed the time lag between the subjects’ movement trajectories and the midline 220 

of the paths (Fig. 3A-B). To compute the lags, we interpolated both cursor trajectories and 221 

path midlines 10-fold (to increase the resolution of our lag estimates) and concatenated all 222 

three trials from the same subject and searchlight length. We computed the Pearson 223 

correlation coefficient between cursor trajectory and path midline for time shifts from of -300 224 

to 300 ms, and defined the time lag as the time shift maximizing the correlation. We then 225 

used the obtained lags to compute mean-squared-error between the lagged path midline and 226 

the subject’s trajectory for each subject and searchlight length (Fig. 3C-D). 227 

 228 

Second, we extracted the cursor trajectories in all sections across all paths that shared a 229 

similar curved shape to explore the differences in cursor position at the apex of the curve 230 

(Fig. 4). The segments were selected automatically by sliding a window of length 18 cm 231 

across the path. We included all segments that were lying entirely to one side (left or right) of 232 

the point in the middle of the sliding window ("C-shaped" segments), with the upper part and 233 

the lower part both going at least 4.5 cm away in the lateral direction (see Fig. 4). Our results 234 

were not sensitive to modifying the exact inclusion criteria. 235 

 236 

To draw the 75% coverage areas of the path inflection points in each group (Fig. 4), we first 237 

performed a kernel density estimate of these points using the Matlab function kde2d(), which 238 

implements an adaptive algorithm suggested in  (Botev et al. 2010). After obtaining the 2d 239 

probability density function p(x), we found the largest h such that ∫p(x)dx>0.75 over the area 240 

where p(x)>h. We then used Matlab's contour() function to draw contour lines of height h in 241 

the p(x) function. 242 

 243 

Receding horizon model 244 
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We modeled subjects’ behaviour by a stochastic receding horizon model in discrete time t. In 245 

receding horizon control (RHC,(Kwon and Han 2005)) motor commands 𝑢௧ are computed to 246 

minimize a cost function 𝐿௧  over a finite time horizon of length h: 247 

minimize 𝐿௧ሺሼ𝑥௧ሽ, ሼ𝑢௧ሽሻ#ሺ1ሻ  

subject to 𝐿௧ ൌ  𝑙௧ା



ୀଵ

 

                   𝑥௧ାଵ ൌ 𝑓ሺ𝑥௧, 𝑢௧ሻ 

where 𝑓 defines the dynamics of the controlled system. Equation (1) is equivalent to an 248 

optimal control problem over the fixed future interval ሾ𝑡  1, 𝑡  ℎሿ. Solving (1) yields a 249 

sequence of optimal motor commands ൛𝑢
௧, 𝑢ଵ

௧, … , 𝑢ିଵ
௧ ൟ. The control applied at time t is 250 

the first element of this sequence, i.e. 𝑢௧ ൌ 𝑢
௧. Then, the new state of the system 𝑥௧ାଵ is 251 

measured (or estimated) and the above optimization procedure is repeated, this time over the 252 

future interval ሾ𝑡  2, 𝑡  1  ℎሿ, starting from the state  𝑥௧ାଵ. 253 

 254 

Applying RHC to our experimental task, the dynamics of the cursor movement was modeled 255 

by a linear first-order difference equation: 256 

𝑥௧ାଵ ൌ 𝑥௧  𝑢௧ିఛ  𝜂௧    𝜂௧ ∈  𝒩ሺ0, 𝜎ଶሻ#ሺ2ሻ257 

where t is the time step, 𝑥௧ the cursor position at time t, 𝑢௧ is the motor command applied at 258 

time t and 𝜏 the motor delay. 𝜂௧ is the motor noise which was modeled as additive Gaussian 259 

white noise with zero mean and variance 𝜎ଶ. We assumed that the controller minimizes  the 260 

following cost function 261 

𝐿௧     ൌ  ሾെ logሺ𝑞௧ାሻ  𝜆|𝑢௧ିఛାିଵ|ଶሿ


ୀఛାଵ

#ሺ3ሻ  
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where 𝐿௧ is the expected cost at time t, qt+k is the probability of the cursor being inside the 262 

path at time t+k, h is the length of the horizon in time and 𝜆 is the weight of the motor 263 

command penalty. At every time step t, 𝐿௧ is minimized to compute 𝑢௧.  The cost function in 264 

(3) reflects a trade-off between accuracy (first term, i.e. log[qt+k]) and effort (second term) 265 

whereas their relative importance is controlled by 𝜆. Cost functions with a similar accuracy-266 

effort trade-off have been used previously to successfully model human motor behaviour 267 

(Braun et al. 2009; Diedrichsen 2007; Todorov and Jordan 2002). 268 

We assumed that subjects have acquired a forward model of the control problem including 269 

the variance of the motor noise 𝜎ଶ. We also assumed that subjects have an accurate estimate 270 

of the position of the cursor at time t, i.e. xt is known. Under these assumptions the 271 

probability distribution of the cursor position at future times t+k, can be computed by: 272 

𝑝൫𝑥௧ାห𝑥௧, ሼ𝑢௧ିఛ, 𝑢௧ିఛାଵ, … , 𝑢௧ିఛାିଵሽൟ ൌ
1

√2𝜋𝑘𝜎ଶ
𝑒ି 

ሺ௫ොశೖሻమ

ଶఙమ #ሺ5ሻ  

with 273 

𝑥ො௧ା ൌ 𝑥௧   𝑢௧ିఛାିଵ



ୀଵ

#ሺ6ሻ  

The probability of the cursor being inside the path is then given by 274 

𝑞௧ା ൌ න
1

√2𝜋𝑘𝜎ଶ

శೖା௪
ଶ

శೖି௪
ଶ

𝑒ି 
ሺ௫ොశೖି௭ሻమ

ଶఙమ 𝑑𝑧#ሺ7ሻ  

where 𝑚௧ is the position of the midline of the path at time t and w the width of the path. The 275 

receding horizon model assumes that motor commands 𝑢௧ are computed by minimizing the 276 

cost 𝐿௧ in each time step t for a fixed and known set of model parameters ሺℎ, 𝜆, 𝜏, 𝜎ଶሻ. We 277 

simplify the optimisation problem by approximating qt+k by 278 

𝑞௧ା ൎ 𝑤 
1

√2𝜋𝑘𝜎ଶ
 𝑒ି 

ሺ௫ොశೖିశೖሻమ

ଶఙమ #ሺ8ሻ  
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The higher 𝑘𝜎
ଶ is relative to the path width w, the higher the accuracy of this approximation. 279 

Note that the squared error is scaled by 𝑘𝜎ଶ and hence, errors in the future are discounted. 280 

This is a consequence of the model of the cursor dynamics in equation (2). 281 

Using equation (8) and removing all terms which do not depend on 𝑢௧, we can derive a 282 

simplified cost function 283 

𝐿෨௧ ൌ  ቈ
ሺ𝑥ො௧ା െ 𝑚௧ାሻଶ

2𝑘𝜎ଶ  𝜆|𝑢௧ିఛାିଵ|ଶ



ୀఛାଵ

#ሺ9ሻ  

Equation (9) shows that the trade-off between accuracy and the magnitude of the motor 284 

commands is controlled by 𝜎ଶ𝜆. We therefore can eliminate one parameter and use the 285 

equivalent cost function 286 

𝐿෨௧ ൌ  ቈ
ሺ𝑥ො௧ା െ 𝑚௧ାሻଶ

2𝑘
 𝜆ሚ|𝑢௧ିఛାିଵ|ଶ



ୀఛାଵ

 with 𝜆ሚ ൌ 𝜎ଶ𝜆#ሺ10ሻ  

The gradient of 𝐿෨௧ is given by 287 

𝜕𝐿෨௧

𝜕𝑢௧ା
ൌ  2𝜆ሚ𝑢௧ା   ቈ

ሺ𝑥ො௧ା െ 𝑚௧ାሻ
𝑘





ୀାሺఛାଵሻ

#ሺ11ሻ  

with 𝑗 ൌ  0, … , ℎ െ ሺ𝜏  1ሻ. The Hessian of 𝐿෨௧ is given by 288 

𝜕ଶ𝐿෨௧

𝜕𝑢௧ା𝜕𝑢௧ା
ൌ 2𝛿,𝜆ሚ  

1
𝑘



ୀ୫ୟ୶ሺ,ሻାሺఛାଵሻ

 #ሺ12ሻ  

with m, n = 0, … , ℎ െ ሺ𝜏  1ሻ. For 𝜆ሚ ൌ 0 all pivots of the Hessian matrix in (12) are positive 289 

and therefore the Hessian is positive definite for 𝜆ሚ ൌ 0. For the general case 𝜆ሚ  0 the 290 

Hessian in (12) remains positive definite as 𝐻ଶ ൌ 𝐻ଵ  𝐷 is positive definite if 𝐻ଵ is positive 291 

definite and 𝐷 is a diagonal matrix with only positive diagonal entries. Given the positive 292 

definiteness of the Hessian in (12) we can conclude that the cost function 𝐿෨௧ is strictly convex 293 

with a unique global minimum. Setting the gradient (12) to 𝟎 defines a system of hെ𝜏 linear 294 
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equations with hെ𝜏 unknowns (𝑢௧, … , 𝑢௧ାିሺఛାଵሻሻ which solution minimizes 𝐿෨௧. The solution 295 

can be computed efficiently using standard numerical techniques. We used the ‘linsolve’ 296 

function of MATLAB which uses LU factorization.  297 

When applying the model to the searchlight path we made the additional assumption that the 298 

model horizon increases with searchlight length 𝑠 up to a maximal value ℎ௫ beyond which 299 

the model horizon remains constant: 300 

ℎሺ𝑠ሻ ൌ ൜
𝑠, 𝑠 ൏ ℎ௫

ℎ௫, 𝑠  ℎ௫
#ሺ14ሻ  

We used the same time step of 1/30s in the model as in the experiment. For a given set of 301 

model parameters ሺℎ௫, 𝜆, 𝜏, 𝜎ଶሻ we simulated the model 100 times with independent 302 

realizations of the motor noise. For each model trajectory we computed the time inside the 303 

path and the lag in the same way as they were computed for the subjects’ trajectories. To 304 

obtain the time inside the path and the lag for a set of model parameters we averaged the 305 

obtained values across the 100 noise realizations.  306 

The model was simulated on the searchlight paths to study the influence of the model horizon 307 

ℎ௫ and the motor noise 𝜎ଶ on performance and lag. To this end, we first simulated the 308 

model for the shortest searchlight paths (10%) assuming that ℎ௫ is at least as long as the 309 

searchlight length at 10% (=3cm) and using a motor delay of 𝜏=200ms. The model was 310 

simulated using 50 logarithmically spaced values between 10-3 and 10+3 for 𝜆 and 45 values 311 

for 𝜎ଶ  composed of 5 linearly spaced values between 0 and 0.04 and 40 linearly spaced 312 

values between 0.05 and 2. Together, this results in 45x50=2250 different parameter sets in 313 

total. From these sets, we chose values for 𝜆 and 𝜎ଶ which yielded a similar performance and 314 

lag as experimentally observed for the 10% searchlight (i.e. 45% time inside the path and a 315 

lag of 200ms). Using these parameter values, the model was then simulated for all searchlight 316 

paths for different model horizons. From the resulting performance as a function of 317 
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searchlight lengths we computed the change-point in the same way as for the experimental 318 

data. In addition, the model was also simulated for different values of the motor noise and the 319 

change-point of the performance was computed for different noise levels as above. These 320 

analyses allowed us to investigate the influence of the model horizon and model motor noise 321 

on the change-point of the performance curve (see Fig. 5). To establish the robustness of the 322 

model results, we repeated the above simulations and analyses for different values of the 323 

motor delay using 𝜏=33ms, 100ms and 233ms. 324 

Parts of the modeling computations were run on the high-performance computing cluster 325 

NEMO of the University of Freiburg (http://nemo.uni-freiburg.de) using Broadwell E5-326 

2630v4 2.2 GHz CPUs. 327 

All analysis code is available at https://github.com/dkobak/path-tracking. 328 

  329 
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Results 330 

 331 

Learning the Tracking Skill 332 

We designed an experiment where subjects had to a track a path moving towards them at a 333 

fixed speed (Fig. 1A and Methods). The narrow and wiggly path was moving downwards on 334 

a computer screen while the cursor had a fixed vertical position in the bottom of the screen 335 

and could only be moved left or right. Accuracy, our performance measure, was defined as 336 

the fraction of time that the cursor spent inside the path boundaries.  One group of subjects 337 

(the expert group, N=32) trained this task for 30 minutes on each of 5 consecutive days. 338 

Another group (the naïve group, N=30) did not have any training at all. Both groups then 339 

performed a testing block that we describe below. 340 

 341 

Over the course of five training days, the experts' accuracy increased from 66.9±8.0% to 342 

79.6±6.4% (mean±SD across subjects, first and last training day respectively) as shown on 343 

Figs 1B-C, with the difference being easily noticeable and statistically significant (p=8x10-7, 344 

z=4.9, Wilcoxon signed rank test; Cohen’s d=1.8, N=32). As all paths generated during the 345 

training were different, this difference cannot be ascribed to memorizing the path, therefore 346 

this improvement represents the genuine acquisition of the skill of path tracking. 347 

 348 

Searchlight testing 349 

To unravel the mechanisms of skill acquisition we designed testing trials called “searchlight 350 

trials”, during which subjects had to track curved paths as usual but could only see a certain 351 

part of the path (fixed distance s) ahead of the cursor. The searchlight length s varied between 352 

10% and 100% of the whole path length in steps of 10% (the minimal s was ~3cm) to probe 353 
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subjects' planning horizon. Searchlight testing was conducted after 5 days of training for 354 

experts or immediately for novices. During the testing block all subjects completed 30 one-355 

minute-long trials (three repetitions of each of the 10 values of s). The average accuracy at 356 

full searchlight s=100% was 82.8±7.5% for the expert group and 65.7±8.4% for the naïve 357 

group (mean±SD across subjects), with the difference being highly significant (p=2x10-9, 358 

z=6.0, Wilcoxon-Mann-Whitney rank sum test, Cohen’s d=2.2, N=62). The performance of 359 

the naïve subjects during 100% searchlight trials (65.7±8.4%) was not significantly different 360 

from the initial performance of the expert subjects on their first day of training (66.9±8.0%), 361 

where searchlight was also 100% (p=0.76, z=0.3, Wilcoxon-Mann-Whitney rank sum test, 362 

Cohen’s d=0.15, N=62). 363 

 364 

Before we present the rest of the data, let us consider several possible ways in which the 365 

accuracy can depend on the searchlight length (Fig. 2A). For each subject, accuracy should 366 

be a non-decreasing function of searchlight length. The data presented in Poulton (1974) 367 

indicate that this function tends to become flat, i.e. subjects reach a performance plateau, after 368 

a certain value of the searchlight length that we will call planning horizon (Fig. 2A, top), 369 

while we assume all subjects will be constrained to the similar poor performance at the 370 

smallest searchlight. For the expert group, this function has to reach a higher point at 371 

s=100%, which could be achieved in one of two ways. Firstly, it could do so because the 372 

initial rise becomes steeper (Fig. 2A, bottom left), due to increased motor acuity after skill 373 

learning (Shmuelof et al. 2012, 2014). Alternatively, the expert group could reach a higher 374 

point at s=100% because the initial rise continues longer. This would suggest an increase in 375 

the planning horizon (Fig. 2A, bottom right) over which subjects plan and execute motor 376 

commands, described well by a receding horizon control (Kwon and Han 2005). It is likely a 377 

combination of both is employed by the human motor system during skill learning. 378 
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 379 

Fig. 2B shows subjects' accuracy in the searchlights trials as a function of the searchlight 380 

length s. All subjects were strongly handicapped at short searchlights, and at the shortest 381 

searchlight the performance of the two groups was similar with experts being only marginally 382 

better (42.5±2.3% for the expert group, 41.4±1.8% for the naïve group, p=0.042, z=2.0 383 

Wilcoxon-Mann-Whitney rank sum test; Cohen’s d=0.5, N=62). 384 

 385 

Visual inspection of Fig. 2B suggests that both effects sketched in Fig. 2A contribute to 386 

expert performance. (i) the planning horizon for the expert group was longer than for the 387 

naïve group; and (ii) the expert group had higher accuracies in the initial part of the 388 

performance curve, before the performance plateaus, which could be explained by an 389 

increased motor acuity. 390 

 391 

To investigate differences in tracking skill between groups, we estimated the planning 392 

horizons of individual subjects. For this we fit each subject's performance (y) with a 393 

changepoint linear-constant curve (see Methods), where the location of the changepoint 394 

defines the horizon length. The initial slope of the changepoint model was significantly 395 

different between the two groups (3.7±1.2 %/cm in the expert group vs. 3.0±1.2 %/cm in the 396 

naïve group, mean±SD; medians: 3.6 %/cm vs. 2.6 %/cm, p=0.008, z=2.6, Wilcoxon-Mann-397 

Whitney rank sum test; Cohen’s d=0.6, N=62). Fig. 2C shows that there was a positive 398 

correlation between the initial slope and asymptote accuracy (R=0.49, p=6x10-5 Spearman 399 

correlation, N=62).  400 

 401 

At the same time, we found that the novice group had an average horizon length of 402 

11.5±3.6cm (mean±SD; median: 12.0cm) and the expert group a horizon length of 403 
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14.2±3.5cm (median: 13.2cm), with statistically significant difference (p=0.007, z=2.7, 404 

Wilcoxon-Mann-Whitney rank sum test; Cohen’s d=0.8, N=62). We also found a positive 405 

correlation between the horizon length and the asymptotic performance (R=0.34, p=0.006, 406 

Spearman correlation, N=62) (Fig. 2D). 407 

 408 

In addition to the changepoint model, we also quantified the “effective” planning horizon 409 

using a single exponential to fit the individual subjects' performance data (see Methods). This 410 

analysis confirmed our results (Fig. 2E). We again observed a significant difference in the 411 

effective horizon length between the two groups (14.76±4.6cm vs. 11.04±4.7cm, means±SD 412 

for both groups, medians: 13.6cm and 10.7cm, p=0.002, z=3.0, Wilcoxon-Mann-Whitney 413 

rank sum test; Cohen’s d=0.8, N=62). Again, we found a positive correlation between the 414 

asymptote performance and the effective horizon length (R=0.43, p=0.0008, Spearman 415 

correlation, N=62). 416 

 417 

We therefore conclude that the difference between expert and naïve performances is a 418 

combination of both possibilities presented in Fig. 2A. Using the expert and naive median 419 

estimates of the intercept, the slope, and the horizon in the changepoint model, we can 420 

estimate the contribution of both effects on the asymptote performance. The changepoint 421 

model asymptote performance for the naive group was 63.5%, compared to 78.7% for the 422 

expert group. The model performance of the expert group at the naive horizon was 74.2%.  423 

Hence, approximately 71% of the expert performance gain of 15.2%, was due to the increase 424 

in the initial slope (possibly due to increased motor acuity), and the remaining 29% can be 425 

attributed to the increase in planning horizon. The identical procedure with mean model 426 

parameter estimates instead of median estimates, yields 44% attributable to motor acuity and 427 
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56% attributable to planning horizon. However, these results do not elucidate whether these 428 

processes are causally related (see Discussion). 429 

 430 

Trajectory analysis 431 

Naïve subjects performed worse than the expert subjects at long searchlights but all subjects 432 

performed almost equally badly at short searchlights. What kinematic features can these 433 

differences be attributed to? 434 

 435 

Clearly, at short searchlights, performance has to be reactive. To measure how quickly 436 

changes in the path were reflected in the motor commands, we computed the time lag 437 

between cursor trajectory and path midline (the lag maximizing cross-correlation between 438 

them). This analysis was done by pooling all trials for each subject and searchlight length 439 

together (see Methods). As Fig. 3A shows, the lag was ~200 ms at s=10% for all subjects and 440 

dropped to ~0 ms at s=50% for the expert group. While many naïve subjects also decreased 441 

their lags to zero, 10 out of 30 never achieved the 0 ms lag. The five naïve subjects showing 442 

the largest lags at large searchlights were also those with the worst performance (Fig. 3B). 443 

Therefore, there was a strong negative correlation between the asymptote lag (mean across 444 

s=80-100%) and the asymptote performance (mean across s=80-100%) of R=-0.58 (Fig. 3B, 445 

p=8x10-7 Spearman correlation, N=62). 446 

 447 

We used the obtained lags to compute the root-mean-squared-error (RMSE) between the 448 

cursor trajectory and the lagged midline. The obtained RMSE was consistently lower in the 449 

expert group than in the naive group, with difference increasing with searchlight length (Fig. 450 

3C). The asymptote RMSE was 1.67±0.31cm (mean±SD across subjects; median: 1.69) in the 451 

naive group and 1.23±0.30 cm (median: 1.13) in the expert group (p=2.14x10-6, z=4.74, 452 
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Wilcoxon-Mann-Whitney rank sum test; Cohen’s d=1.44, N=62), and was negatively 453 

correlated with the asymptote performance (Fig. 3D; R=-0.79, p=0, Spearman correlation, 454 

N=62). This shows that the naive subjects were not simply lagging behind the optimal 455 

trajectory, but did larger errors even after accounting for the lag. 456 

 457 

Next, for each testing path we found all segments exhibiting sharp leftward or rightward 458 

bends (see materials and methods, our inclusion criteria yielded 13±5 segments per path, 459 

mean±SD). For each searchlight length and for each subject, we computed the average cursor 460 

trajectory over all segments (N=38±8 segments per searchlight) after aligning all segments on 461 

the bend position (Fig. 4, leftward bends were flipped to align them with the rightward 462 

bends). At s=10% all subjects from both groups follow very similar lagged trajectories, 463 

resulting in low accuracy. As searchlight increases, expert subjects reach zero lag and choose 464 

more and more similar trajectories, whereas naïve subjects demonstrate a wide variety of 465 

trajectories with some of them failing to reach zero lag and others failing to keep the average 466 

trajectory inside the path boundaries. To visualize this, we plotted the kernel density estimate 467 

75% coverage contour of inflection points for each group. As the searchlight increases, the 468 

groups become less overlapping and the naïve group appears to form a bimodal distribution 469 

(Fig. 4). 470 

 471 

To study the changes in movement variability produced by subjects after skill learning, we 472 

additionally looked at the within-subject variability during the segments defined above at 473 

100% searchlight and compared this across groups. To measure the variability in subject’s 474 

movement on a single subject level, we summed the standard deviations in both x and y 475 

directions across inflection points of each single segment. The subjects’ averages of these 476 

positions are shown in Fig. 4. The summed standard deviations were significantly lower for 477 
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the expert group (median summed SD=24.1) than for the naïve group (median summed 478 

SD=37.6) (p=1.5x10-7, z=-5.2, Wilcoxon-Mann-Whitney rank sum test, Cohen’s d=1.7, 479 

N=62). This effect was not present at 10% searchlight (expert median summed SD=53.3, 480 

naïve median summed=49.9, p=0.94, z=0.08, Wilcoxon-Mann-Whitney rank sum test, 481 

Cohen’s d=0.03, N=62). 482 

 483 

In summary, at very short searchlights all subjects performed poorly because in this reactive 484 

regime their trajectories lagged behind the path. At longer searchlights the expert subjects 485 

were able to plan their movement to accommodate the bends (the longer the searchlight the 486 

better), but naïve subjects failed to do so in various respects: either still lagging behind, not 487 

being able to execute the fine movements due to lower motor acuity and higher movement 488 

variability, or not being able to plan a good trajectory. 489 

 490 

Receding horizon model analysis 491 

Next, we modeled subjects’ behaviour by receding horizon control (RHC). Previously, 492 

optimal feedback control models have been proposed as mechanisms by which the human 493 

brain computes motor commands. Here we intend to expand this framework to include 494 

receding horizon control, a version of optimal feedback control with finite horizons, as a 495 

mechanism by which motor commands are computed by the human brain. We illustrate this 496 

here by showing that such an approach is able to capture some crucial features of the 497 

behavioural results from our experiments.  498 

 499 

In RHC, a sequence of motor commands is computed to minimize the expected cost over a 500 

future time interval of finite length, i.e. the horizon. After the first motor command is applied, 501 

the optimization procedure is repeated using a time interval shifted one time step ahead. See 502 
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Methods section for a more detailed and formal description of RHC. As cost function, we 503 

used the weighted sum of a measure of inaccuracy (i.e. probability of being outside the path) 504 

and the magnitude of the motor cost (see Methods for details). Cost functions with a similar 505 

trade-off between movement accuracy and motor command magnitude have been used 506 

previously to describe human motor behaviour in different tasks (Braun et al. 2009; 507 

Diedrichsen 2007; Todorov and Jordan 2002). The model has four different parameters: 508 

horizon (ℎ௫), motor noise (𝜎ଶ), motor delay (𝜏) and motor command penalty weight (𝜆ሻ. 509 

 510 

We ran the model on the experimental paths to obtain simulated movement trajectories from 511 

which task performance and lag could be computed in the same way as for the experimental 512 

trajectories (Fig. 2 and 3). To determine the model parameters 𝜆 and 𝜎ଶ, we simulated the 513 

model for the shortest searchlight paths (10%) using different values of  𝜆 and 𝜎ଶ while 514 

fixing 𝜏 at 200ms and assuming that the horizon covers at least the length of the 10% 515 

searchlight (Fig. 5A-C). From this parameter scan, we determined the values of 𝜆 (0.776) and 516 

𝜎ଶ (0.271) for which the model yielded approximately the experimentally observed task 517 

performance and lag of 45% and 200ms for the 10% searchlight paths (cf. Fig. 2 and 3).  518 

 519 

Using these parameter values we then simulated the model for all searchlight paths for 520 

varying values of the horizon (Fig. 5D, E). As a sanity check, we also simulated the model 521 

for varying values of the motor noise with a fixed value of the horizon ℎ௫=14.8cm (Fig. 522 

5G, H). Our simulations revealed that both, a larger model horizon as well as a smaller motor 523 

noise parameter increased the task performance and decreased the lag for large searchlight 524 

lengths. Hence, the experimentally observed higher performances and smaller lags of expert 525 

subjects compared to naive (Fig. 2B and 3A) could be explained either by an increased model 526 

horizon or by reduced motor noise in the model. However, the searchlight length at which the 527 
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task performance of the model reached a plateau increased with model horizon while it 528 

remained constant or decreased with a smaller motor noise parameter (Fig. 5F, I). 529 

Experimentally, on the other hand, we observed that subjects with a higher task performance 530 

reached their performance plateau at higher searchlights (Fig. 2D, E). This correlation 531 

between performance and plateau onset, that was observed experimentally, cannot be 532 

explained by the variation of the motor noise parameter across subjects, but is only consistent 533 

with an increase of the model horizon parameter for subjects with higher performance. 534 

Moreover, with changing motor noise, the model predicted substantial changes in task 535 

performance and lag not only for large but also for short searchlight lengths while 536 

experimentally the differences between expert and naïve subjects were small for the 10% 537 

searchlight length. Model predictions for changes in planning horizon were again consistent 538 

with this experimental observation.  539 

 540 

The analyses of Fig. 5G-I were repeated for various model horizons between 3.4cm and 541 

29.6cm (not shown) showing similar patterns as presented in Fig. 5G-I for ℎ௫ 3.4cm: the 542 

performance change-point tended to remain constant or increase with increasing motor noise; 543 

changing motor noise induced a clear change of performance and lag also at short 544 

searchlights. For ℎ௫=3.4cm the performance was essentially constant across searchlights for 545 

all values of the noise. Furthermore, we repeated the model simulations for motor delays of 546 

𝜏=33ms, 𝜏=100ms and 𝜏=233ms and obtained qualitatively similar results (not shown). 547 

  548 
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Discussion 549 

 550 

We used a paradigm that allowed us to study skill development when humans had to track an 551 

unpredictable spatial path. The skill requires fast reactions to new upcoming bends in the 552 

road, but also a substantial “planning ahead” component – i.e. the anticipation and 553 

preplanning of movements that have to be made in the near future. We used the accuracy, i.e. 554 

the fraction of time the cursor was inside the path boundaries, as the measure of performance. 555 

We observed a substantial improvement in accuracy after 5 days of training (Fig. 1B,C). The 556 

paths were different on every trial, so the improvement in performance cannot be attributed to 557 

a memory for the sequence. 558 

 559 

What changes in the motor system occur through learning that allowed skilled subjects to 560 

perform better? One component of this improvement is motor acuity (Shmuelof et al. 2012, 561 

2014) and corresponds to the subjects’ ability to execute motor commands more accurately. 562 

We hypothesized that an additional component is an increased ability to take into account 563 

approaching path bends and to prepare for an upcoming movement segment. We directly 564 

estimated both effects by using a searchlight testing where only a part of the approaching 565 

curve was visible. In agreement with our hypothesis, we found that subjects with a higher 566 

tracking skill demonstrated larger planning horizons: on average ~14cm for the expert group 567 

vs. ~11cm for the naïve group, corresponding to the time horizons of ~0.4s and ~0.3s 568 

respectively. Our results suggest that the increase in planning horizon is not an 569 

epiphenomenon but is causally related to the performance increase, as expert subjects showed 570 

worse performance when the searchlight was reduced below their planning horizon (Fig. 2C). 571 

We estimate that between one third and one half of the performance increase in the expert 572 

group was due to the longer planning horizon. 573 
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 574 

The improvement of acuity and the extension of planning horizon are not necessarily 575 

independent processes and may influence each other. For example, it is possible that 576 

improved acuity frees up cognitive resources that allow the expansion of planning horizon. 577 

Future work should investigate the causal relationship between these two aspects of skill 578 

learning. 579 

 580 

Note that “planning”/“preparing” the movement can be interpreted differently depending on 581 

the computational approach. In the framework of optimal control (Todorov and Jordan 2002), 582 

subjects do not plan the actual trajectory to be followed, but instead use an optimal time-583 

dependent feedback policy and then execute the movement according to this policy. The 584 

observed increase in planning horizon can be interpreted in the framework of model 585 

predictive control, also known as receding horizon control, RHC (Kwon and Han 2005). In 586 

RHC, the optimal control policy is computed for a finite and limited planning horizon, which 587 

may not capture the whole duration of the trial. This policy is then applied for the next 588 

control step, which is typically very short, and the planning horizon is then shifted one step 589 

forward to compute a new policy. Hence, RHC does not use a pre-computed policy, optimal 590 

for an infinite horizon, but a policy which is only optimal for the current planning horizon. 591 

Increasing the length of the planning horizon is therefore likely to increase the accuracy of 592 

the control policy. In our experiments this would allow for a larger fraction of time spent 593 

within the path boundaries. We designed a simple RHC model to test directly which 594 

components in the model would have to change through training to quantitatively explain the 595 

subject’s behaviour. The dynamics of movement and the cost function were modeled in line 596 

with previous studies that used optimal control to describe human behaviour in various motor 597 

control and learning tasks (Braun et al. 2009; Diedrichsen 2007; Todorov and Jordan 2002). 598 
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We ran our RHC model on the experimental paths and demonstrated that it yields 599 

qualitatively correct predictions: larger value of model horizons led to performance similar to 600 

that of the experts’ subjects. Our findings, thus, demonstrate that subjects’ behaviour can be 601 

understood in the context of RHC, and longer planning horizons of the expert group indicate 602 

that subjects learn how to take advantage of future path information to improve motor 603 

performance. 604 

 605 

Despite a clear difference in the distribution of planning horizons between the naive and the 606 

expert groups (Fig. 2D), there was a substantial overlap: the planning horizon of many naive 607 

and expert subjects were similar. While this might simply reflect a moderate effect size 608 

combined with inter-subject variability and measurement noise, it also remains a possibility 609 

that the difference between groups was largely caused by those naive subjects with very low 610 

horizons and expert subjects with very high horizons.  611 

 612 

Related work 613 

Ideas like the RHC were put forward in a recent study (Ramkumar et al. 2016) that suggested 614 

that movements are broken up in ‘chunks’ in order to deal with the computational complexity 615 

of planning over long horizons. That study suggests that monkeys increase the length of their 616 

movement chunks during extended motor learning over the course of many days which may 617 

be explained by monkeys increasing their planning horizon with learning. At the same time, 618 

the efficiency of movement control within the chunks improved with learning which may 619 

also be the result of a longer horizon. Despite these potential consistencies with our approach 620 

we note that in their model Ramkumar et al. (2016) assumed that ‘chunks’ are separated by 621 

halting points (i.e. points of zero speed) and movements within ‘chunks’ are optimized 622 
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independently from each other. Our RHC model does not have independent movement 623 

elements but movements are optimized continuously. 624 

 625 

Even though our study, to the best of our knowledge, is the first to directly investigate the 626 

evolution of the planning horizon during continuous path tracking, an increase in the planning 627 

horizon after learning has been recently demonstrated when learning sequences of finger 628 

movements (Ariani et al. 2020). Similar path tracking tasks have been used before (Poulton 629 

1974). Using a track that was drawn on a rotating paper roll, these early studies found that the 630 

accuracy of the tracking increased with practice and with increasing searchlight length (which 631 

was modified by physically occluding part of the paper roll, (Poulton 1974), p 187). These 632 

studies, however, did not investigate the effect of learning on the planning horizon. 633 

 634 

More recent studies used path tracking tasks where the goal was to move as fast as possible 635 

while maintaining the accuracy (instead of moving at a fixed speed). In all of these studies 636 

the identical path was repeatedly presented. In one study subjects had to track a fixed maze 637 

without visual feedback and learnt to do it faster as the experiment progressed (Petersen et al. 638 

1998); there the subjects had to once “discover” and then remember the correct way through 639 

the maze. In another series of experiments, Shmuelof et al. asked subjects to track two fixed 640 

semi-circular paths. Subjects became faster and more accurate over the course of several days 641 

(Shmuelof et al. 2012), but this increase in the speed and accuracy did not generalize to 642 

untrained paths (Shmuelof et al. 2014). In contrast to these previous path tracking studies, we 643 

used randomly generated paths throughout the experiment. By investigating the 644 

generalization of the path tracking skill to novel paths we could reveal an increasing planning 645 

horizon with learning. 646 

 647 
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The planning horizon could possibly be inferred from the distance the subject gazes ahead of 648 

the cursor, and the inclusion of eye movement data could provide an interesting extension for 649 

future work. However, eye movement recordings often do not provide a clear answer in these 650 

types of experiments (Green and Bavelier 2006; Lehtonen et al. 2014; Wilkie et al. 2008) and 651 

the searchlight paradigm remains the most direct avenue of establishing how much 652 

information is used to guide behaviour. 653 

  654 
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Conclusion 655 

In conclusion, we have established that people are able to learn the skill of path tracking and 656 

improve their skill over 5 days of training. This increase in motor skill is associated with the 657 

increased motor acuity and increased planning horizon. The dynamics of preplanning can be 658 

well described by a receding horizon control model.  659 
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Figure Legends  673 

 674 

Figure 1. Experimental Paradigm. (A) Subjects had to track a curved path that was dropping 675 

down from top to bottom of the screen with a fixed speed of 34 cm/sec by moving the cursor 676 

horizontally. (B) Expert subjects’ performance over the 5 days of training. Bold line shows 677 

the group average, thin lines show individual subjects (each point is a mean over 3 trials with 678 

the same searchlight length, 100%). (C) Expert subjects' performance over the 5 days of 679 

training with the performance on the first day subtracted. 680 

 681 

Figure 2. Searchlight testing. (A) Expert subjects were trained to have a higher performance 682 

at full searchlight length (top). This could be achieved by an increased initial slope (bottom 683 

left) at smaller searchlight length and/or an increased planning horizon as indicated with 684 

dashed vertical lines (bottom right). (B) Mean tracking performance for each searchlight 685 

length for each individual subject, in blue for the expert group and in red for the naïve group. 686 

Faint lines show individual subjects and bold lines show group means. (C) Relationship 687 

between the asymptote performance and the initial slope in in the changepoint linear-688 

constant model (***: p<0.001). (D-E) Planning horizon for each subject was defined by 689 

fitting a changepoint linear-constant curve (D) or an exponential curve (E) (see text). Both 690 

models yield an asymptote performance for each subject; the changepoint model yields a 691 

horizon length and the exponential fit yields an “effective” horizon length. The scatter plots 692 

with marginal distributions show relation between the asymptote performance (as a proxy for 693 

subjects' skill) and their planning horizon. Spearman’s correlation coefficients are shown on 694 

the plot (**: p<0.01, ***: p<0.001). Colour of the dot indicates the group.  695 

 696 
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Figure 3. Analysis of trajectories. (A) Mean time lag between cursor trajectory and path 697 

midline, for each searchlight length for each individual subject (faint lines) and mean of per-698 

subject values (bold lines), in blue for the expert group and in red for the naïve group. (B) 699 

Asymptote lag and asymptote performance across subjects. Correlation coefficient is shown 700 

on the plot (***p<0.001). Colour of the dot indicates the group. (C) and (D) show the same 701 

for the root mean square error (RMSE) between the cursor trajectory and the path midline.  702 

 703 

Figure 4. Average per-subject trajectories in sharp bends (leftward bends were flipped to 704 

align them with the rightward bends). Each trajectory is averaged across approximately 40 705 

bends identified in all paths (the number of bends varied across searchlight lengths, see 706 

Methods section ‘Trajectory analysis’). Colour of the lines indicates the group. Black lines 707 

show average path contour. Dots show turning points of the trajectory. Contour lines show 708 

the kernel density estimate 75% coverage areas. Subplots correspond to searchlight lengths 709 

s=10%, 20%, 50%, 60%, 90% and 100%. 710 

 711 

Figure 5: Task performance (A) and lag (B) for model simulations of the 10% searchlight 712 

paths as a function of 𝜆 and 𝜎ଶ assuming 𝜏=200ms and a model horizon of at least the length 713 

of the 10% searchlight. Note that for high values of  𝜆 and 𝜎ଶ the lag may not be reliable due 714 

to small peaks in the cross-correlogram between the movement trajectories predicted by the 715 

model and the paths (C). The white lines in (A) and (B) show the value of the parameters 716 

which yielded a task performance and a lag similar to what was experimentally observed 717 

(Fig.2 and 3). The intersection of the two lines was at 𝜆 ൌ 0.77 and 𝜎ଶ ൌ 0.27. Using these 718 

parameter values the model was simulated for all searchlight lengths and for various model 719 

horizons yielding the task performance and lag shown in (D) and (E). The performance 720 

curves in (D) were analysed using the same change-point analysis as for the experimentally 721 
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obtained performance curves demonstrating an increasing change-point with increasing 722 

model horizon before flattening out at around 10cm (F) except for very short model horizons 723 

for which the performance curves were essentially flat and therefore, the change-point could 724 

not reliably be detected. Using a fixed horizon of ℎ௫=14.8cm and 𝜆 ൌ0.77   model 725 

performance and lag was computed for varying motor noise (G, H) and the change-point of 726 

the performance was calculated for different values of the motor noise (I).  727 
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Motor skill learning decreases movement variability and 
increases planning horizon 

Methods Outcomes

Conclusion
Experts had a lower movement variability and took a longer 
section of the future path into account when performing the 
task. A receding horizon control model that increases with 

tracking still quantitatively captured the movement behavior.
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