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Figure S1. Optimal Control Theory Predictions for Bimanual Reach-

ing Task

Predictions of optimal control theory for one-cursor (left) and two-

cursor (right) conditions, if the left hand is perturbed with a leftward

(red) or rightward (blue) directed force field. Position traces for left

and right hand (A), forward (y) velocity of the perturbed hand (B), lat-

eral (x) velocity of the perturbed hand (C), and lateral (x) velocity of

the unperturbed hand (D) are shown.
Supplemental Discussion

This section contains a more detailed description of the
optimal control model for bimanual reaching move-
ments as presented in the main text, as well as a des-
cription of the implementation in Matlab (Mathworks
[Natick, MA]). Furthermore, a sensitivity analysis of the
correction rate in respect to arm stiffness is provided.

System Model

The model and its parameters are to a large degree de-
rived from previous work on the two-degree-of-freedom
arm [S1]. Because of the interactions between the elbow
and shoulder joint, this system is nonlinear. Given the
short length of the reaching movement (10 cm), I used
a local linear approximation of the system in Euclidian
coordinates. However, very similar results can be
obtained with a nonlinear, joint-based model, by using
iterative techniques to derive the optimal control policy
[S2]. In the model, a state vector that contains 12 vari-
ables conceptualizes each hand. The state vector is
composed of the x and y Euclidian coordinates of posi-
tion (p), velocity (v), and force (f), muscle activation (h),
and target position (g). The kinematics are modeled with

pt + 1 = pt + Dtvt

vt + 1 = vt + Dtft
I

; (S1)

in which Dtis the size of the discrete time step, t is the
number of time steps, and I is the inertia of the arm at
the endpoint (0.5 kg).

I simulated the delay in the muscles by using two-
coupled first-order low-pass filters, with time constants
t1 = t2 = 40 ms [S3], that related the force (f) to the motor
command (u). Thus, the produced force is a low-pass-
filtered version of the motor command u. Again, the
‘‘muscle activations’’ are conceptualized in Eucledian
coordinates because I am using a local linear approxi-
mation to a nonlinear system:

ft + 1 = ft + Dt=t2ðht 2 ftÞ
ht + 1 = ht + Dt=t1ðut 2 htÞ

: (S2)

To simulate sensory delay, I expanded the state space
with a series of four-coupled first-order filters for the
sensed position, velocity and force:
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The current state of the system is xð1Þ, and the state
that can be sensed is xð4Þ, in which x is used as a place-
holder for p, v, or f. The time constant for each filter was
ts = 15 ms.

In summary, the state vector for each hand is
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And the sensed state is
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By defining the appropriate matrices, the whole time-
discrete system can be written as follows:�
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It is important to note that A, B, and H are block diag-
onal; i.e., the left hand has no influence on the right hand
and vice versa.



Figure S2. Experimental Data for Bimanual Reaching Task

Experimental data from experiment 1, plotted in the same format as

in Figure S1. Results are averaged across hands and participant and

displayed such that the perturbed hand appears on the left. As the

arm stiffness of the perturbed hand increases, the within-hand cor-

rection rate increases and the between-hand correction decreases.

Figure S3. Sensitivity Analysis of the Correction Rate in Respect to

the Parameter Arm Stiffness

Sensitivity analysis of the correction rate in respect to the parameter

arm stiffness (N/m). As the arm stiffness of the perturbed hand

increases, the within-hand correction rate increases and the

between-hand correction decreases.

S2
The stiffness of the perturbed arm was the only sys-
tem parameter that was fitted to the experimental
data. I used the data from the two-cursor condition
and minimized the squared difference between the
observed and simulated perturbation. The estimated
stiffness term was 129.9 N/m.

The system matrices can be generated by calling
M = bimoc_system(‘system’).
The Cost Functions

The cost function for the two-cursor condition is com-
posed of three terms:

J =
XT
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The third term is the time-independent control cost.
The first term reflects the cost of not being at the target
location, and the second term reflects the cost of not
having zero velocity. These costs increase exponentially
over the course of the movement up to the maximal
movement time (900 ms), reflecting the requirement of
being at the target with zero velocity in the end of the
movement:
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To derive the relative weights of the costs and the time
constant of the exponential rise, I estimated these
parameters to fit the velocity profile of unperturbed
movements, resulting in tcost = 51 ms, cp = 40 m-2,
cv = 5 s2/m2, and wu = 5*10e-5/s. For the one-cursor
task, I used the same cost function, but replaced the
position term with a common spatial term (Equation 2).
The time-dependent cost function can be written in the
form of

J =
XT

t = 1

xT
t Qtxt + uT

t Rut; (S9)

and these matrices are generated for the one- and two-
cursor conditions by J = bimoc_system(‘costfunction’,
M, ‘cursor’,number_of_cursors).

Derivation of the Optimal Control Policy
With the cost function, the Riccati Equations [S4] are
used to calculated the optimal cost-to-go matrix Vtand
the optimal control gains Lt. This computation is per-
formed from the end to the start of the movement, itera-
tively moving backward in time:

VT = QT

Lt =
�
R + BTVt + 1B

	2 1
BTVt + 1A

Vt = ATVt + 1A 2 AT Vt + 1BLt + Qt

: (S10)

The control gains allow us to compute the motor com-
mands, given an estimate of the current state,
ut = 2 Ltbxt, that minimize the cost function of the one-
cursor and two-cursor condition, respectively. The
main prediction of optimal control theory, independent



S3
control for the two-cursor condition, and dependent
control in the one-cursor condition arises from the fact
that for the two-cursor cost function, all Lt are block-
diagonal matrices, and for the one-cursor task, all Lt

have nonzero off-diagonal entries. The derivation of
the optimal control policy for a given system M and
a cost function J is obtained by V = oc_solveLQG(M,J).

Force-Field Simulations
I then simulated the reaction of the system under the
optimal control policy while a force field like in experi-
ment 1 was applied to the arm. Each time step of the
simulations consisted of the following:

1. Computation of the sensory inflow based on
current state, yt = Hxt.

2. Measurement update of the state estimatebxtgiven the sensory data ytwith the optimal
Kalman gains. The standard deviation of the mea-
surement noise was 0.02 m for position, 0.2m/s for
velocity, and 1 N for force, relative to the state
noise with a standard deviation 1 [S3].

3. Calculation of the current control signal, with
ut = 2 Ltbxt.

4. Simulation of the next time step of the real system
with the system equations (Equation S6). For the
first simulation, I used the system as described
above. For another, I applied a leftward-pointing
force field to the left hand, and for a last simula-
tion, a rightward-pointing force field.

5. Time update of the Kalman filter to update the
state estimate assuming that there is no force field
applied to the hand. This step is the forward model
prediction of the controller.

These steps are implemented in the function
x = oc_runsystem(M,V,J);.

No noise was added to the motor output, and sensory
noise was assumed to be of the same size as used in
[S3]. Figure S1 shows the prediction of the model under
the one- and two-object conditions. Figure S2 shows the
mean experimental data in the same format, averaged
over participants and hands. These figures can be
regenerated with bimoc_simulate(‘simulate_plot’) and
bimoc_simulate(‘data_plot’);

Sensitivity Analysis of Arm Stiffness
Most model parameters could be either derived from
previous modeling work or fitted from the unperturbed
movement. Only the stiffness of the perturbed arm,
i.e., the mechanical resistance of the arm to the force
field, had to be estimated by the adjustment of this
parameter so that the squared differences between pre-
dicted and observed x velocity of the perturbed hand
could be minimized (Figures S1C and S2C). This resulted
in an estimate of 129.9 N/m. The sensitivity of the
predicted within- and between-hand correction rate
depending on the value of the arm stiffness is displayed
in Figure S3. As the arm stiffness of the perturbed hand
increases, the within-hand correction rate increases and
the between-hand correction decreases because more
of the correction is performed by the mechanical resis-
tance of the arm against perturbations. Thus, the exact
sharing of correction between the arms depends on
the stiffness parameter, which for our setup could not
be derived with high confidence. Despite this limitation,
the qualitative prediction of there being no sharing of the
correction in the two-cursor condition and shared
corrections in the one-cursor condition (in the correct
order of magnitude) is stable across a wide range of
parameters and model specifications.
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