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Abstract

The acquisition of novel muscle activity patterns is a key aspect of motor skill learning, which can be seen, for example, when
beginner musicians learn new guitar or piano chords. To study this process, we introduce here a new paradigm that requires
learning new patterns of flexion and extension of multiple fingers. First, participants practiced all the 242 possible combinations
of isometric finger flexion and extension around the metacarpophalangeal joint (i.e., chords). We found that some chords were
initially extremely challenging, but with practice, participants could eventually achieve them quickly and synchronously, showing
that the initial difficulty did not reflect hard biomechanical constraints imposed by the interaction of tendons and ligaments. In a
second experiment, we found that chord learning was largely chord-specific and did not generalize to untrained chords. Finally,
we explored which factors made it difficult to produce some chords quickly and synchronously. Both variables were well pre-
dicted by the muscle activity pattern required by the chord. Specifically, chords that required muscle activity patterns that were
smaller and more similar to muscle activity patterns required by everyday hand use could be produced more synchronously.
Together, our results suggest that our new paradigm provides a valuable tool to study the neural processes underlying the
acquisition of novel muscle activity patterns in the human motor system.

NEW & NOTEWORTHY In this study, we introduce a paradigm to study the learning of novel muscle activation patterns that
deviate from those we are used to producing in everyday activities. Participants learned to produce different combinations of
concurrent flexion and extension of 1–5 fingers of the right hand. We found that the ability to produce muscle activation patterns
quickly and synchronously depended on how far they were from everyday hand activities.

EMG; hand function; motor skill learning; muscle synergies; natural statistics

INTRODUCTION

The human motor system possesses a great capacity for
learning new motor skills. Professional musicians and elite
athletes vividly illustrate the range and complexity of move-
ments that can be attained through repeated practice. Motor
skill learning is a multifaceted process (1), involving a range
of aspects from temporal sequencing of movements, fine
control of speed and force, and more cognitive processes
such as action selection and planning.

This paper focuses on a distinct aspect ofmotor skill learn-
ing: that is, the acquisition of novel muscle activity patterns.
In fact, many tasks require the synchronous activation of
specific combinations of muscles that are initially difficult to
produce, possibly because they are not part of the existing
motor repertoire. For example, the muscle activity pattern
required to produce a certain guitar chord (e.g., F# chord) is
initially challenging to achieve. Beginners often position
their fingers one by one, deliberately using a sequential
approach. After training, however, experts can produce the
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same patterns quickly and synchronously. How novel mus-
cle activity patterns are incorporated in themotor repertoire
remains an open question, as well as which neuronal struc-
tures are involved in this process.

It is a common experience that some muscle activity pat-
terns (e.g., grasping) are intuitive and easy, while others are
difficult. One possible explanation is that muscle activity
patterns that are needed for everyday handmovements span
only a small subspace of all possible muscle combinations
(2). This subspacemay be represented by the nervous system
as “muscle synergies.”According to this idea, muscle activity
patterns that are far away from these “natural” synergies
would be difficult to produce. Although there is considerable
debate on the neural origin and function of muscle synergies
(3–6), the idea that the human motor system has a strong
tendency to activate muscles in a regular set of patterns is
well supported (2). Here, we use the term muscle synergy
purely at a descriptive level, referring to muscle activity pat-
terns that the motor system can generate quickly and
synchronously.

Following this definition, learning motor skills such as
new guitar chords would require the acquisition of a novel
muscle synergy. In the attempt to capture this learning pro-
cess, we developed a well-controlled task, which required
participants to producemuscle activity patterns that are out-
side of their natural repertoire. Our approach builds on prior
work that examined finger combinations sampled from out-
side the typical movement subspace (7) and extends earlier
paradigms that focused exclusively on flexion-only (8) or
extension-only (9, 10) finger configurations around themeta-
carpophalangeal (MCP) joint. Here, we combined flexion and
extension presses, resulting in 242 unique configurations (or
“chords”), spanning a space from common to highly com-
plex finger combinations.

In experiment 1, we verified that even though some chords
were initially extremely hard to achieve, all could eventually
be successfully mastered. In experiment 2, participants were
trained on a limited set of four chords, showing that per-
formance improvements reflect the specific acquisition of
trained muscle activity patterns, rather than general learn-
ing. Finally, in experiment 3, we compared EMG recordings
during chord production with those recorded during natural
hand actions to show that the muscle activity patterns
required for many chords lay well outside the distribution of
patterns seen in natural hand use, and that the speed and
finger synchrony for each chord related to its distance from
this natural distribution.

METHODS

Participants

Fourteen healthy right-handed participants (mean age ¼
25.1 yr, SD ¼ 2.5; 7 females) were recruited for experiment 1.
For experiment 2, we recruited a different group of 14 healthy
participants (mean age¼ 22.4 yr, SD¼ 3.1; 5 females), none of
whom had previous experience with the task. Due to the
potential influence of prior musical training (11), we did not
recruit any professional musician. Participant had varying
degrees of training with finger-based musical instruments
(range 0–14 yr, mean¼ 4.4, SD¼ 5.4). Finally, 10 participants

among those who participated in experiment 1 were also
recruited for experiment 3 (mean age ¼ 25.9 yr, SD ¼ 2.1;
5 females). All participants provided written informed con-
sent before undergoing the experimental procedures. All pro-
cedures were approved by the Western University Research
Ethics Board (ref 108479) and designed in accordance with
the Declaration of Helsinki.

Apparatus

Participants performed isometric finger presses in flexion/
extension directions while keeping their right hand inside a
custom-built device (12). The finger box was composed of
two five-finger keyboards stacked on top of each other. Foam
padding on each key ensured that fingers were comfortably
restrained between the upper and lower keys. In addition,
the finger box had an adjustable frame by which the space
between the upper and lower keys could be adapted to
accommodate different hand sizes. Force transducers
(Honeywell, FS series, sampling rate ¼ 500 Hz) above and
below each key recorded the force exerted by each finger in
extension/flexion direction (10 force transducers overall).
Finger forces were mapped onto the vertical position of five
cursors (white lines, Fig. 1B) projected on a screen, which
moved up and down when the corresponding finger pro-
duced force in extension or flexion direction, respectively.
The screen projection of the force produced by the ring fin-
ger and the pinkie was amplified by a factor of 1.5. This
adjustment helped maintain the range of force required to
produce chords feasible for all participants; participants
were unaware of this adjustment. A gray rectangle marked
the resting area (1.2 N flexion to 1.2 N extension; 0.8 N for
ring and pinkie). Additional horizontal lines above and
below the resting area indicated the flexion/extension
response areas (2–5 N in both directions; 1.3–3.3 N for ring
and pinkie; see Fig. 1). Across fingers and directions, the pad-
ding allowed for a �1-mm upward and downward displace-
ment of the finger.

Task

At the beginning of each trial, participants had to keep the
cursors inside the resting zone by maintaining their fingers
relaxed. The trial began with a short 0.5 s announcement
phase, where a chord was presented on the screen with a
spatial visual cue (Fig. 1B: wait for go cue phase). A total of
242 of chords can be produced by combining finger flexion,
extension, or holding still, 242 ¼ 35 � 1 (all fingers still condi-
tion). Gray rectangles were presented inside the upper and
lower response areas to prompt isometric flexion or exten-
sion of the corresponding finger. No rectangle indicated that
the finger had to remain still. After 500 ms, the rectangles
turned green, signaling the go cue. Participants were
instructed to produce the required finger forces as quickly as
possible. Successful chord production was achieved when
the chord was held for 600ms. If participants were unable to
achieve the required chord within 10 s, the trial was marked
as unsuccessful. Next, the rectangles disappeared, and par-
ticipants were instructed to relax their fingers and return to
the resting zone. After each trial, a number projected on the
screen informed participants whether they successfully
achieved the chord (1: successful trial, 0: unsuccessful trial).
The following trial started after a 1-s intertrial interval. After
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each block of trials, participants received feedback regarding
their median execution time (time between the go-cue and
the beginning of the 600-ms hold phase). To compensate for
slight drifts in force transducers and the posture of the hand,
each finger was calibrated by measuring the baseline force
while participants were instructed to fully relax their fingers
in the finger box.

Experimental Procedures

Experiment 1 aimed to characterize the speed and syn-
chrony of every possible extension and flexion combination
(i.e., chord). Participants practiced all 242 chords over
4 days, completing 1,210 trials per day, organized in 12 blocks
(100 trials in the first 11 blocks, 110 trials in the last). Each
day included five consecutive trials per chord. The order of
chord presentation was fully randomized across days and
participants. Participants were verbally instructed to pro-
duce the chords as quickly as possible and encouraged to
reduce the execution time.

Experiment 2 aimed to study the generalization in our par-
adigm by comparing improvements in trained chords with
the generalization to untrained chords. We selected eight
four-finger chords around themedian of themean deviation
distribution (see Performance Measures) from days 3 and 4 of
experiment 1. The selected chords were grouped into two sets
of four chords. Participants practiced one of the two sets of
chords (hereinafter “trained” chords) over five consecutive
days, while the other set (“untrained” chords) was only
tested on day 1 and day 5. Trained and untrained chord
sets were randomly assigned, with seven participants
training on set 1 and the other seven on set 2. The task and
instructions were identical to experiment 1. Participants
completed eight blocks of 50 trials each day. Each chord
was repeated for five consecutive trials before moving to a
different chord and the order of chord presentation was
fully randomized across blocks and participants. On day 1
and day 5, trained and untrained chords were randomly
intermixed in each block. The selected chords were group
1 [“EFEF-,” “EFF-E,” “E-EEE,” “FEF-E”] and group 2 [“FF-

EE,” “F-FEF,” “-EFEE,” “-FEFF”]. Letters E and F repre-
sent the Extension and Flexion of thumb to pinkie from
left to right, while “-”means the finger must stay steady.

Experiment 3 aimed to explore the factors that determine
the speed and synchrony of chord production. It involved a
single session in which we recorded the EMG from hand
muscles (see Electromyographic Recordings) both during
chord production and natural everyday hand actions. The
chord task was structured as in Experiments 1 and 2 and
included 68 chords (10 one-finger, 30 three-finger, 28 five-
finger chords). Three- and five-finger chords were selected
from the lower, middle, and upper thirds of the mean devia-
tion distribution from days 3 and 4 of experiment 1. This
selection procedure ensured that we had chords of different
levels of mean deviation for each number of fingers. We only
selected a subset of the 68 chords to speed up data acquisi-
tion. Participants performed 680 trials (10 trials per chord),
divided into 10 blocks, nine blocks with 70 trials, and the last
block with 50 trials.

After completing the chord task, participants were
moved to another experimental setup to record the muscle
activity patterns occurring during natural hand actions.
We designed a board containing a variety of everyday
objects (Fig. 4C). This included natural activities such as
grasping, rotating, pressing, sliding, drawing, writing, and
manipulating objects of different shapes. Participants
were asked to freely interact with any of the objects as they
normally would. To further increase the diversity of the
recorded natural hand actions, participants were also
encouraged to interact with any object in the room beyond
the board, including doors, cabinets, books in a bookshelf,
light switches, an oscilloscope, a whiteboard and markers,
a computer with mouse and keyboard. Although partici-
pants were encouraged to interact with a wide variety of
objects, there were no specific instructions on the order
and duration in which the objects were used. EMG was
continuously recorded for �20 min. Importantly, EMG
electrode locations (see Electromyographic Recordings)
remained identical between the chord and natural tasks to

A B

Figure 1. Synergy learning task. A: the finger box measured the isometric flexion and extension forces produced by the five fingers. B: the task. A spatial
visual cue instructed the required forces for chords (here extension of D1, D3, D5, flexion of D4 and holding D2 still). The force level on each finger was
indicated by white lines. After the cue turned green, participants had maximally 10 s to produce the required force pattern and hold it for 600 ms.

LEARNING MUSCLE ACTIVITY PATTERNS

J Neurophysiol � doi:10.1152/jn.00088.2025 � www.jn.org 349

Downloaded from journals.physiology.org/journal/jn (099.242.096.024) on September 11, 2025.

http://www.jn.org


ensure that the muscle activity patterns can be described
within the same sensor space and are directly comparable.

Performance Measures

Success rate of a chord was defined as the percentage of
trials in which the chord was successfully achieved (and
held for 600ms) within 10 s after the go-cue.

Execution time was defined as the time interval between
the go-cue and the beginning of the 600-ms hold phase. It
therefore included both reaction time (RT; from go-cue to
first force threshold crossing) andmovement time (MT; from
RT to the beginning of hold phase). Participants were given
the goal to reduce their execution time, and they were pro-
vided with feedback about their median after each block of
trials.

Mean deviation evaluates whether the chord was pro-
duced synchronously (i.e., as a single synergy), or whether it
was produced as a sequence of finger presses. The force gen-
erated by the five fingers in each trial can be described as a
five-dimensional trajectory, F 2 RT�5, where T is the number
of time samples between the moment the first finger left the
resting zone until the correct force pattern was formed
(500-Hz sampling frequency). If the fingers are pressed in
perfect synchrony, the resulting trajectory will be a straight
line (~c, dashed straight line in Fig. 2D) from ~0 2 R1� 5 (rest-
ing force) to the final force pattern,~f T 2 R1� 5. If the chord
was produced as a sequence of finger presses, the force tra-
jectory would first go in the direction of the first finger, and
then in the direction of the second (Fig. 2D, gray line), etc. As
an overall measure of finger synchrony, we averaged the
Euclidian distance of the produced force trajectory from the
straight line across the chord execution (from the first force
threshold crossing to the beginning of the hold phase).

mean deviation ¼ 1
T

XT

t¼1

~f t;: �
~f t;::~c

~c:~c
~c

�����

�����
2

where ~f t;: is the force of the five fingers at time sample t.
Before the calculation, force traces were smoothed using a
moving average windowwith a width of 30 samples (¼ 60ms).
Higher synchrony results in a mean deviation closer to 0.
Importantly, mean deviation is independent of execution
time, i.e., if participants produced the same sequence of finger
presses more quickly, execution time would go down, but
mean deviation would stay the same.

Response asynchrony was calculated for the chord-specific
training study (experiment 2) where we had enough repeti-
tions of a single chord. We introduced this measure to be
able to express the asynchrony between fingers in terms of
their relative timing. We defined the response time of each
finger as the time when the derivative of the force crossed
20% of its peak in each trial. In this way, the response time is
independent of the baseline force exerted by each finger. The
overall response asynchrony between the fingers was then
defined as the difference between the response time of the
fastest and slowest finger in each trial.

Electromyographic Recordings

Electrode placement.
In experiment 3, we used a 10-channel surface EMGmontage
(Delsys, Trigno Researchþ System, Trigno Duo Sensors)

targeting the muscles acting on the metacarpophalangeal
joints: the extensor digitorum communis (EDC), extensor
digiti minimi (EDM) and extensor indicis (EI), extensors of
the thumb (extensor pollicis brevis and longus), the flexor
digitorum superficialis (FDS), abductor pollicis brevis (APB),
and abductor digiti minimi (ADM) (Fig. 5A, top). Raw EMG
signals were recorded at 2,148 Hz. Electrode locations were
selected based on the anatomy of the target muscles and
were optimized for each participant by asking them to per-
form isometric flexion/extension with individual fingers.
The electrode was then placed on the surface location where
muscle activity appeared maximal through palpation and
EMG signal inspection.

EMG preprocessing.
The signal from each EMG electrode (sampling rate 2,148 Hz,
bandwidth 20–450 Hz) was demeaned, rectified, and low-
pass filtered (6th order Butterworth filter, cut-off: 40 Hz).
The same preprocessing was used for EMG recordings for
both chords and natural hand actions.

Chord muscle activity patterns.
We estimated the muscle activity patterns required for each
chord by averaging the preprocessed EMG signals from each
channel over the 600-ms holding phase and across trials. To
account for gain differences across electrode sites, each
channel was normalized by dividing by the Euclidean norm
of activity across all chords.

Distribution of natural muscle activity patterns.
After preprocessing, the EMG activity from natural hand
actions was averaged within nonoverlapping 20-ms bins and
normalized using the same channel-wise gain factor used for
the chord EMG data. The binned normalized data were then
partitioned into 10 sets. Each set contained bins sampled
200 ms apart by selecting every 10th bin. This approach
reduced temporal dependence among samples, which is nec-
essary for the kNN estimator (see Pattern of muscle activity).

Models of Chord Speed and Synchrony

In the attempt to capture which factors influenced how
quickly and synchronously a chord could be produced, we
designed a set of linear models to predict the mean deviation
and execution time of each chord using a range of character-
istics. Because we wanted to test the predictive power of the
muscle activity pattern, we restricted the modeling effort to
the 68 chords studied in experiment 3. The dependent vari-
able was the mean deviation (or execution time) from days 3
and 4 in experiment 1, resulting in a 68-by-1 vector for each
of the 14 participants. To cross-validate, each model was fit-
ted to the data from 13 participants. Themodel’s predictions
were then correlated with the left-out participant, resulting
in 14 correlation values. In the text, we report the predictive
performance of models as the mean of these correlation val-
ues and the standard error of mean (SE) across participants
(r ± SE). Models were compared using paired t test.

Noise ceiling.
Given that any performance measure is evaluated in the
presence of measurement noise, no cross-validated model
can reach a correlation of 1 with the data. To estimate the
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noise ceiling, each participant’s data were correlated with the
group mean from which that participant was excluded.
These 14 correlation values were then averaged to determine
the noise ceiling for the models. The noise ceiling predicts
the performance of a group model that captures all system-
atic differences across the group.

Baseline model.
Both mean deviation and execution time differed substantially
for chordswith different numbers offingers (Fig. 2E). Increasing

the number of fingers will increase both the cognitive complex-
ity of the stimulus and the motoric difficulty. Therefore, the
number of fingers was included as baseline in all our models.
We built a designmatrixwith columns corresponding to an indi-
cator variable (0 or 1) for the number of fingers (three columns
for 1-, 3-, and 5-finger chords of experiment 3).

Muscle activity pattern model.
The designmatrix for thismodel corresponded to the average
chord muscle activity patterns across participants (i.e., 68

A B

C
D

E

Figure 2. Experiment 1. A: success rate averaged across 14 participants within each day. Each dot represents a chord. Each box represents the median
and interquartile range (IQR). B: example trials of two chords from two participants. The green dashed lines denote the minimal required forces in exten-
sion (top) and flexion (bottom) directions. Force from the ring and pinkie is scaled 1.5� for visual comparison with other fingers; 0 s is the go-cue.
Execution time (ET) and mean deviation (MD) of the trials are labeled. C: average execution time (s) by day for different number of fingers. Error bars are
SE across participants. D: schematic explanation of mean deviation. Perfect finger synchrony leads to a straight-line trajectory from rest to final force
(dashed line). Examples of sequential (gray; high deviation) and synchronous (green; low deviation) force trajectories are plotted. Arrows denote the
Euclidean distance from the straight-line. E: average mean deviation by day for chords with different number of fingers. Error bars are SE across
participants.
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chords by 10-EMG channels). The average success rate of par-
ticipants in experiment 3 was 99.57%, achieving almost 10
successful trials per chord and participant, giving a reliable
EMGmeasurement.

Force pattern model.
This model captured the amount and direction (flexion/
extension) of the force generated by each of the five fingers.
The design matrix for this model contained the force gener-
ated by each finger in extension and flexion direction aver-
aged over the 600-ms holding phase across trials and
participants (i.e., 68 chords by 10 forces, 5 regressors for flex-
ion, 5 for extension).

Visual complexity model.
This model aimed to capture the visual and perceptual com-
plexity of the spatial cue used to instruct the chords (Fig. 1B).
Visual complexity was quantified by counting how many
times (in one chord) adjacent fingers received different
instructions. For example, all five-finger flexion has zero
transitions, while alternating flexion and extension of the
five fingers results in four transitions. We built a 68 chords
by five designmatrix, with each column corresponding to an
indicator variable (0 or 1) for the number of changes.

Dissociating Muscle Activity Patterns to Magnitude and
Pattern

Magnitude of muscle activity.
The magnitude of each chord’s muscle activity pattern
ð~mi 2 R10;1) was evaluated by calculating the Euclidean
norm ~mi

�� ��, which was then averaged across participants.
This resulted in a 68-dimensional vector that was used as the
groupmagnitudemodel.

Pattern of muscle activity.
We evaluated the probability of a chord’s muscle activity pat-
tern, ~mi 2 R10;1, to belong to the distribution of natural mus-
cle activity patterns, using an approach based on k-nearest
neighbor density estimation. The goal was to estimate
the probability of each chord’s pattern belonging to the dis-
tribution of natural patterns regardless of the magnitude.
Therefore, all muscle activity patterns (both chord and natu-
ral distribution) were normalized to unit length (see sche-
matic in Fig. 6B). For each normalized chordmuscle activity
pattern (~m�

i ), we then ranked the normalized muscle activity
patterns from the natural distribution based on their
Euclidean distance to ~m�

i . Let Rk;i denote the distance from
~m�

i to its kth nearest neighbor in the natural distribution. The
kNN density estimator estimates the density for ~mi by

p̂knn i; kð Þ ¼ k

n

1
volumeof a 10� dimensional ballwith radiusRk;i

Due to the noisiness of the natural data, instead of choos-
ing a single k, we found amore robust estimator for this den-
sity by integrating the results across k ¼ 0. . .5. For this, we
fitted a linear slope passing through 0 and the points defined

by 1
n ;R

10
1;i

� �
,. . ., 5

n ;R
10
5;i

� �
. Because the distribution of probabil-

ity estimates was strongly right skewed, we used the loga-
rithm of this slope as a similarity measure of the chord
pattern to the natural distribution. These log-probability

estimates (higher values indicated higher similarity) were
closer to normal distribution.

To obtain a reliable estimate, the estimation was per-
formed for each chord and each of the 10 natural distribu-
tions (see Distribution of natural muscle activity patterns)
and then averaged across them. These estimates were then
averaged across the 10 participants to derive a group similar-
ity to natural statistics model.

Alignment of Subspaces of the Muscle Activity Patterns
for Chords and Natural Actions

To determine the relationship of the space of muscle activ-
ity patterns of the chords and the subspace of natural muscle
activity patterns in a cross-validated fashion, we plotted the
distribution of natural muscle activity patterns into two nono-
verlapping splits: the first and third 5-min of data were con-
catenated to create the first split, and the second and fourth
5-min were concatenated to form the second split. Therefore,
each split contained samples of different sets of actions.
Principal component analysis within each split extracted 10
principal components (PCs). To cross-validate, the data from
one split was projected to the PCs of the other split. The var-
iance explained by PCs then reflects how aligned the probabil-
ity distribution of natural muscle activities is between
different sets of actions. Finally, we projected the 68 chord
muscle activity patterns matrix onto the natural PCs to evalu-
ate overall how the chords span the space of themuscle activ-
ity. Because natural and chord recordings were performed in
the same session without changing electrode locations, the
two datasets were directly comparable (see Experiment 3).

RESULTS

All Chords Were Biomechanically Possible

In experiment 1, participants were tasked to produce all
242 combination of finger flexion and extension (chords)
each day for 4 days. We first wanted to establish whether
each chord was biomechanically possible, and if yes, how
quickly and synchronously participants were able to produce
them. We therefore counted the number of trials in which
participants could produce the chord (success rate). On day 1,
the average success rate for some chords was as low as 61 ±
10.8% SE across participants (Fig. 2A, day 1). This indicates
that some chords were very challenging, as participants were
unable to produce the required force pattern even with 10 s
allotted per trial. Nonetheless, by day 4, even the most chal-
lenging chords were performed with nearly 100% success
rate, with the least successful chord reaching a 91% (Fig. 2A,
day 4). This indicates that no hard biomechanical limitations
prevented chord production and that, with practice, partici-
pants could learn the muscle activity pattern required for
each chord.

Both Execution Time and Synchrony Improved with
Practice

The main task goal for participants was to produce the
instructed chord as fast as possible after the go-cue. As one
performancemeasure, we therefore used execution time, the
duration between the go-cue and the moment the correct
force pattern was achieved. Execution time (Fig. 2C) showed
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a significant main effect of day (repeated-measure ANOVA;
F3;39 ¼ 58.9, P ¼ 1.51e-14) and number of fingers (F4;52 ¼
163.3, P< 1e-16), alongside a significant day� number of fin-
gers interaction (F12;156 ¼ 41.2, P < 1e-16). Post hoc pairwise
comparisons indicated significant improvement in execu-
tion time from days 1 to 4 for all number of fingers (all t13 >
3.06, all P < 0.0046). Therefore, chord production became
quicker with learning from day 1 to 4. This improvement
resulted from a reduction of both RT (t13 ¼ 6.53, P ¼ 1.89e-5)
andMT (t13 ¼ 7.10, P¼ 8.05e-6). Across chords, RT correlated
positively withMT (r¼ 0.20±0.03 SE).

Following our synergy definition, we hypothesized that if
participants learned a new muscle synergy, they would not
only produce the chord more quickly but also produce the
chord as a single unit with all fingers pressing synchrony.
Fast execution times could also be achieved by producing an
asynchronous sequence more quickly. Therefore, we used
mean deviation tomeasure synchrony between fingers inde-
pendent of the speed of chord production. A schematic
explanation of this measure is shown in Fig. 2D. For a
sequential trial (gray trajectory; finger 2 is pressed before 1),
the force trajectory (in 5-dimensional space) is far away from
ideal synchronous trajectory (dashed line). For more syn-
chronous production (green trajectory), the average distance
from ideal synchronous trajectory is smaller. Because the
distance is averaged across the entire execution time, this
measure captures the relative asynchrony of the fingers,
independent of the overall speed.

On day 1, many chords were produced with substantial
time gaps between the fingers (see Fig. 2B), but performance
gradually became more synchronous by day 4. Mean devia-
tion (Fig. 2E) showed a significant main effect of day (F3;39 ¼
15.99, P ¼ 6.22e-7) and number of fingers (F4;52 ¼ 494.9, P <
1e-16), as well as a significant day � number of fingers inter-
action (F12;156 ¼ 9.53, P¼ 1.03e-13). Post hoc pairwise compar-
isons indicated significant improvement in mean deviation
from days 1 to 4 for 2- to 5-finger chords (all t13 > 3.96, P <
0.00081), but not significant for 1-finger chords (t13 ¼ 0.91,
P ¼ 0.19). Furthermore, the trial-by-trial correlation of mean
deviation and execution time was r ¼ 0.653 (±0.041 SE),
showing that fast execution was achieved by producing
more synchronous finger presses.

Learning is Chord-Specific

Our results from experiment 1 indicate that chord produc-
tion became quicker and more synchronous. Of course, this
learning may not indicate the learning of specific, newmus-
cle activity patterns, but rather reflect general improvements
(e.g., through familiarization with the task and experimental
equipment). In experiment 2, we therefore quantified how
much of the performance improvement was specific to the
practiced chords. We selected eight four-finger chords,
which showed a medium mean deviation in experiment 1.
From these, each participant was assigned four trained and
four untrained chords (see METHODS). The trained chords
were practiced for five consecutive days while untrained
chords were only tested on days 1 and 5.

On day 1, execution time andmean deviation were not sig-
nificantly different between trained and untrained chords
(paired t test: both t13 < 0.57, both P > 0.58; Fig. 3A). To
assess chord specificity of learning, we measured the

difference between the last two blocks of the pretest to the
first two blocks of the post-test (Fig. 3B). Both execution time
(t13 ¼ 6.14, P ¼ 3.52e-5) and mean deviation (t13 ¼ 5.48, P ¼
1.05e-4) of the trained chords improved significantly more
than untrained chords (Fig. 3B). As in experiment 1, mean
deviation and execution time were correlated on a trial-by-
trial basis r¼ 0.650 (±0.065 SE), showing that improvements
were not achieved through fast sequencing, but through syn-
chronous force production.

For untrained chords, the change from pretest to post-
test was not significant across participants in either measure
(two-tailed one-sample: both t13 < 0.77, P> 0.46; Fig. 3B: red
box). The general improvements were therefore very small
compared with chord-specific improvements. This can also
be seen in the example chord shown in Fig. 3C. In summary,
we observed relatively little generalization of learning to the
untrained chords.

Quantification of Remaining Asynchrony after Practice

Although the reduction in mean deviation for the trained
chords clearly indicated more synchronous performance,
mean deviation did not approach 0 (i.e., perfect synchrony).
Because mean deviation is a somewhat abstract measure, we
also quantified the residual asynchrony between finger
presses after learning by looking at absolute time difference
between the response of the fastest and slowest finger in
each trial (see METHODS). Mean absolute finger asynchrony
on day 5 was 77.64 ± 20.75 ms (SE) for trained and 121.13 ±
32.37 ms (SE) for untrained chords. This range of finger asyn-
chronies suggests that the residual mean deviation may not
reflect a deliberate sequencing of the motor commands
delivered to themuscles but rather could reflect biomechani-
cal interactions ormotor noise.

Minimal Changes in Force Patterns after Learning

Each chord required the production of a specific pattern
of force directions, but we did not specify the exact force
level for each finger. Thus, it is possible that participants not
only got better at producing a specific force pattern but also
changed the pattern of forces they produced. To test this, we
averaged the finger forces during the hold phase across trials
for each trained chord in experiment 2. We then performed
eight repeated-measures ANOVAs (one for each chord) with
day (days 1 and 5; 2 levels) and finger (5 levels) as within-sub-
jects factors. Bonferroni correction was applied to control
the family-wise error rate, resulting in a corrected signifi-
cance threshold of P < 0.00625. The analysis revealed a sig-
nificant main effect of day for one chord (“E-EEE”, F1;6 ¼
170.30, P ¼ 9.98e-5), but nonsignificant effects of day for the
remaining seven chords (all F1;6 < 10.45, all P > 0.0178). In
addition, the day � finger interaction was not significant for
any chord (all P > 0.0123). Thus, these results suggest that
participants did not change the pattern of finger forces with
learning in any systematic manner and only showed mini-
mal reductions in the overall force.

Factors Determining the Speed and Synchrony of
Each Chord

To understand what needs to be learned for each chord to
improve performance, it is useful to fully understand what
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makes certain chords harder in the first place. Being able to
predict the baseline difficulty of each chord is also relevant
for designing training studies in which we want to match
sets of trained and untrained chords for initial performance.
Here, we attempted to quantify the role of the visual com-
plexity of the stimulus and motoric factors, such as the
required force andmuscle activity patterns, as determinants
of difficulty. As a proxy for chord difficulty, we concentrated
on mean deviation, as synchronous production was integral
to our definition of a muscle synergy. As a secondary mea-
sure of difficulty, we also considered execution time. Note
that mean deviation and execution time were highly corre-
lated across the 242 chords (r ¼ 0.82 ±0.05 SE), suggesting
that they are complementary measures of a common latent
factor. To investigate the determining factors of chord syn-
chrony, 68 candidate chords were selected based on experi-
ment 1, including 1-, 3-, and 5-finger chords. The mean
deviation measure of these chords, averaged across days 3
and 4 of experiment 1, spanned a range between 0.045 and

1.870, indicating that they reflected the entire spectrum of
chords that are very easy to very difficult.

Noise ceiling.
Before building models to explain differences in difficulty,
we established the noise ceiling, i.e., the maximal predictive
performance we can expect from a group model (see
METHODS). For this, we determined the average correlation of
the mean deviation of the 68 chords from each participant
with the groupmean (with that subject left out). The average
correlation was r ¼ 0.878 (±0.0104 SE) across the 14 partici-
pants of experiment 1. This high reliability means that the
data permit the comparison of different groupmodels.

Baseline model.
In experiment 1, we found that chords involvingmore fingers
had a significantly higher mean deviation. Many factors,
including muscle activity and visual complexity, increase
with the number of fingers. We therefore built a baseline

A

C

B

Figure 3. Experiment 2: chord-specific learning. A: average
execution time and mean deviation for trained (blue) and
untrained (red) chords by practice day. Lines represent the
average performance across the eight blocks with shading
representing the SE across participants. B: improvement of
execution time (top) and mean deviation (bottom) for trained
and untrained chords, as measured as the difference
between the first two blocks of post test and the last two
blocks of the pretest (���P< 0.001). Box plots show the dis-
tribution of improvements across 14 participants. Each box
represents the median and interquartile range (IQR). Each
dot represents a participant. C: finger force traces averaged
across all trials of pre- and post-test days. Top is when a par-
ticipant trained on the chord and the bottom is for a partici-
pant for which the same chord was untrained. The shading
represents the SE across the trials. Force traces are shown
from go-cue to the average execution time (�ET) labeled
along with average mean deviation (�MD). Force from the
ring and pinkie is scaled 1.5� for visual comparison with
other fingers.
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model (see METHODS) that predicts mean deviation as an
arbitrary function of the number of fingers. This model
achieved a predictive accuracy of r ¼ 0.750 (± 0.0083 SE),
indicating that a large portion of mean deviation can
indeed be explained by this general factor. Nonetheless,
the baseline model predicted the left-out data signifi-
cantly worse than the noise-ceiling model ðt13 ¼ 10.89, P ¼
3.33e-8), which indicates that there were easier and
harder chords within the groups of three- and five-finger
chords, and that these differences were consistent across
participants.

Muscle activity pattern.
This model predicted mean deviation as a linear function of
the muscle activity pattern. To test this idea, in experiment 3,
we recorded EMG from finger flexor and extensor muscles
(Fig. 4A, left), while participants produced the 68 selected 1-,
3- and 5-finger chords. We averaged the rectified EMG during
the hold phase (see METHODS) to estimate the muscle activity
required for each of the 68 chords (Fig. 4A, right). We then
predicted the mean deviation of chords (drawn from experi-
ment 1) for each participant using a linear model of these 10
EMG channels (see METHODS). The model predicted the left-
out mean deviation substantially better than the baseline
model (r ¼ 0.8549±0.0102, t13 ¼ 9.37, P ¼ 1.89e-7, Fig. 4B).
Although the performance was very close to the noise ceil-
ing, it was still significantly lower (t13 ¼ 10.31, P¼ 1.26e-7).

Force pattern.
Even though the muscle model predicted mean deviation
well, the performance needs to be compared against other
competing models. We considered that the difficulty may
relate to the force direction produced by each finger. For
example, chords involving the extension of the ring finger
could be more difficult. This is especially the case, as we
demanded the same force level for both flexion and exten-
sion and for different fingers, except for ring and pinkie,
requiring 1.5 times less force. It is well known that different
fingers have different maximum voluntary contraction force
for flexion and extension (13). To capture these factors, we
predicted themean deviation from the average force pattern
required by each chord (1 regressor per finger and direction;
see METHODS). This model outperformed the baseline (r ¼
0.8014±0.0077, t13 ¼ 9.95, P ¼ 1.90e-7) but did not perform
as well as the muscle model (t13 ¼ 5.64, P ¼ 4.02e-5; Fig. 4B),
suggesting that muscle activity patterns carry more informa-
tion about the difficulty than force direction.

Complexity of visual cue.
Alternatively, we considered that differences in performance
between different chords may arise from the perceptual and
cognitive processing of the visual cues that indicated each
chord, independent of the amount ofmuscle activity and the
force directions. Although we did not have an independent
way of measuring visual “complexity,” any model based on

A

B C

Figure 4. Experiment 3. A, left: dots indicate the approximate electrode locations on a participant’s dorsal and palmar surfaces of the right hand. The
intended muscles are labeled with numbers corresponding to these locations. Right: average EMG over the 600-ms hold phase, averaged across partic-
ipants. B: cross-validated prediction performance (predictive correlation) of three models (���P< 0.001). The lower limit is the prediction of the baseline
model (number of fingers) and the upper limit (gray dashed line) is the noise ceiling. Error bars are SE across participants. C: a common object board
used to assess the natural repertoire of hand muscle activity.
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visual or cognitive factors would predict that two chords
with same visual pattern (mirrored across the vertical or hor-
izontal axis) should have the same complexity. To test this
idea in a nonparametric way, we first grouped the chords
with mirror-symmetric visual cues together, resulting in 69
groups among the 242 chords. From these 69 groups of
equivalent visual complexity, 37 showed a significant differ-
ence (P < 0.05) between chords in mean deviation. This
number outstrips significantly the expected number of sig-
nificant results under the Null hypothesis (5% of 69¼ 3.45).
This shows that the complexity of the visual cue alone is not
sufficient to explainmean deviation.

To test how much variance of the mean deviation across
chords this factor alone could predict, we designed a model
by counting the number of transitions in the spatial visual
cue of the chords (see METHODS). For example, all fingers flex-
ion had zero complexity and alternating flexion, and exten-
sion of all fingers had four. Hence, this model is blind to the
anatomical information from chords (i.e., which finger
should press to which direction) and only captures the visual
complexity of the chords. This model performed signifi-
cantly better than the baseline model (r ¼ 0.8243 ±0.0124,
t13 ¼ 6.51, P ¼ 9.84e-6, Fig. 4B). However, it performed worse
than the muscle model alone (t13 ¼ 5.004, P ¼ 1.21e-4;
Fig. 4B), again showing that perceptual or cognitive factors
alone cannot fully account for chord synchrony.

Dissociating Magnitude and Pattern of Muscle Activity

We then asked what characteristics of the chord muscle
activity patterns determined how difficult a chord was to
execute. A chord’s muscle activity pattern is a point in the
10-dimensional space of muscle activations (Fig. 5A: ~m1; ~m2).

The magnitude (or length) of the vector captures the overall
activation of muscles required for a chord. In contrast, the
direction of the vector is determined by the exact pattern of
activity across muscles, independent of the magnitude. We
explored which of these two factors predicted chord speed
and synchrony better.

Magnitude.
Given that the overall force requirements were identical for
all chords involving the same number of fingers, differences
in the magnitude of muscle activity may indicate the need
for co-contraction of muscles to compensate for the biome-
chanical interactions between fingers. We therefore pre-
dicted that chords that required a higher magnitude should
be harder to produce synchronously. Indeed, the magnitude
(Euclidean norm) of the chordmuscle activity pattern corre-
lated positively with mean deviation for 3-finger (r ¼
0.418 ±0.035; t13 ¼ 11.901, P ¼ 1.15e-8) and 5-finger chords
(r ¼ 0.383 ±0.056; t13 ¼ 6.86, P ¼ 5.73e-6; Fig. 5B), and posi-
tively but not significantly for 1-finger chords (r ¼ 0.092±
0.077; t13 ¼ 1.19, P ¼ 0.119). The magnitude model predicted
the left-out data significantly better than the baseline model
(r ¼ 0.787±0.012; t13¼ 4.32, P¼ 4.17e-4; Fig. 5C).

Pattern.
We also predicted that synchronous production should
depend on the exact pattern of muscle activities. The motor
system is likely to represent some muscle activity patterns
common to natural actions as muscle synergies, such that
they can be quickly and synchronously produced. We there-
fore predicted that if the pattern required by a chord is simi-
lar to these natural patterns, it would have lower mean

A B

C D

Figure 5. Magnitude and pattern explain the difficulty.
A: schematic of evaluating the magnitude (Euclidean norm)
and pattern (similarity to natural statistics models) factors.
~mis represents two chord muscle activity patterns. The dis-
tribution of natural muscle activity patterns is plotted.
B: average mean deviation versus average magnitude for
five-finger chords. The chords at the two extremes of both
estimates are labeled. C: prediction correlation of magni-
tude, naturalþmagnitude, and muscle activity pattern mod-
els (���P < 0.001). The lower limit is the prediction of the
baseline model (number of fingers) and the upper limit (gray
dashed line) is the noise ceiling. Error bars are SE across
participants. D: average mean deviation versus average
similarity to natural statistics for five-finger chords.
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deviation. Within experiment 3, we therefore also collected
EMG while the participants performed naturalistic hand
activities, interacting with a number of common objects
(Fig. 4C; see METHODS, Experiment 3). To determine whether
the estimated distribution of natural muscle activity patterns
depends on the specific actions that were performed, we split
the data into the first and second 10 min of data recording.
Participants interacted with different objects in a random
order across these two halves. We calculated a cross-channel
correlation matrix of EMG activities in each half of the data.
The split-half correlation was r ¼ 0.859 (±0.037 SE), indicat-
ing that the distribution of muscle activities was relatively
independent of the specific actions performed (2, 14, 15) and
could bemeasured in a reliablemanner.

From the entire data, we then formed the nonparametric
model of the distribution of natural muscle activity pat-
terns (see METHODS). To only account for the pattern, the
magnitude was normalized between natural and chord
(Fig. 5A). Then, we estimated how likely a chord pattern
would be under this natural distribution (see METHODS).
These estimates correlated negatively with the mean devia-
tion of 1-finger (r ¼ 0.223 ±0.068; t13 ¼ 3.27, P ¼ 3.02e-3),
3-finger (r ¼ 0.312 ±0.023; t13 ¼ 13.78, P¼ 1.96e-9), and 5-fin-
ger chords (r ¼ 0.451 ± 0.034; t13 ¼ 13.08, P ¼ 3.71e-9;
Fig. 5D). The natural statistics model added on top of the
magnitude model significantly outperformed the magni-
tude alone in predicting the left-out data (r ¼ 0.801 ± 0.011;
t13 ¼ 6.897, P ¼ 5.45e-6; Fig. 5C). This confirmed that, inde-
pendent of the magnitude, the closeness to the natural dis-
tribution of muscle activity patterns can predict how
synchronous a chord could be produced.

Predicting Execution Time

In our main analysis, we concentrated on mean deviation
of the chords as a measure of motoric difficulty. We obtained
similar results using execution time. The noise ceiling of the
execution time was lower than for mean deviation, at r ¼
0.6815 (±0.0237 SE). Again, themuscle activity patternmodel
outperformed both force pattern and the complexity of the
visual cue models in predicting execution time (r ¼
0.6717 ±0.035; t13 > 3.54, P < 0.0018). In contrast to mean
deviation, the muscle activity pattern model reached the
performance of noise ceiling (t13 ¼ 1.44, P ¼ 0.17). As before,
the magnitude model significantly outperformed the base-
line model (r ¼ 0.604±0.020; t13 ¼ 2.80, P ¼ 0.0075) and the
natural statistics model combined with the magnitude
model significantly outperformed the magnitude model
alone (r ¼ 0.619±0.017; t13¼ 2.65, P¼ 0.01).

Chords Span the Space of Possible Muscle Activity
Patterns

Finally, we designed our task such that the muscle activity
patterns associated with the set of chords would exhaustively
span the space of possible handmuscle activity patterns. It is
well known thatmuscle activity pattern associated with natu-
ral handmovementsmostly lie within a low-dimensional sub-
space (2). We therefore wanted to ensure that some of our
chords requiredmuscle activation patterns that fell outside of
that space. To quantify this, we used principal component
analysis to extract the 10 principal components (PCs) of the
natural muscle activity patterns. Using cross-validation (see
METHODS), we then determined what proportion of the var-
iance was captured by these dimensions usingmuscle activity
recorded during other manual actions. The results (Fig. 6)
revealed the expected low-dimensional structure of the natu-
ral muscle activity patterns, such that PC 6 to 10 only
accounted for 8.92% of the variance.

We then projected the chord patterns onto the natural
PCs. This revealed a much flatter distribution of variance,
where the five-dimensional subspace that was least visited
by natural hand actions accounted for 31.95% of chord var-
iance. This shows that a substantial portion of the muscle
activity patterns for the chords required muscular patterns
that were rarely produced during natural hand use.

DISCUSSION
In this paper, we developed a new paradigm to study the

acquisition of novel hand muscle activity patterns (“muscle
synergies”) that are outside the current behavioral reper-
toire. Intuitively, this is an important aspect of many skill
learning tasks, such as playing the guitar or piano. Our para-
digm targets synergy learning by asking participants to per-
form “chords”—i.e., combinations of isometric finger flexion
and extension at the metacarpophalangeal joint. In experi-
ment 1, we included all the 242 possible chords that can be
formed by flexing or extending any combination of 1–5 fin-
gers independently. Some of these hand configurations
could be performed immediately and almost effortlessly
(e.g., isometric flexion of the index finger), others weremuch
more challenging. On day 1, participants failed to produce
the most challenging chords in nearly 40% of the trials. This

Figure 6. Variance of natural and chord muscle activity patterns projected
on every natural PCs. The shading is SE across participants. PCs are
sorted based on the variance they explain in natural patterns. Stars
denote the significance of two-sample t test between the variances (�P <
0.05, ��P< 0.01, ���P< 0.001).
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initial low success rate is remarkable, considering that we
allowed a 10-s window to achieve chords and repeated each
chord five times. The allowed time window largely exceeds
the usual timescales of everyday voluntary movements and
should be sufficient to achieve any force pattern within par-
ticipants’motor repertoire. One possibility is that the biome-
chanical constraints imposed by the intricate interplay of
muscles and tendons may prevent the execution of some
chords (16). Tendons and ligaments show quite substantial
intersubject variability (17–19); thus, it was not clear a priori
that all individuals would be able to produce all chords.
However, after 4 days of practice, all 14 participants achieved
all chords with nearly 100% success rate. This suggests that
all 242 hand configurations are biomechanically possible
within the relatively low force range required by the para-
digm. Therefore, themost challenging chords likely demand
muscle activity patterns that the untrained motor system
simply cannot produce. The successful production of these
chords after practice therefore suggests the acquisition of
new neural representations supporting their execution.

Chords can be achieved by two different strategies: one is
to produce the isometric force of each finger sequentially
until the desired configuration is reached. This strategy sim-
plifies the problem of controlling different muscles synchro-
nously. Once the required force for one finger is achieved
and the corresponding muscle pattern stabilized, another
finger is activated, gradually forming the full chord configura-
tion. Indeed, some subjects chose this strategy in the initial
part of their training. The improvement in mean deviation
across training sessions, however, shows that participant did
not improve their execution time solely by producing the
same sequence faster. Instead, participants activated the rele-
vant muscles more synchronously. This second “synergistic”
strategy suggests that participants formed new chord repre-
sentations, which allowed them to recruit the corresponding
muscle activity pattern both rapidly and synchronously.

This conclusion is also supported by the results of experi-
ment 2. Here, participants practiced only four four-finger
chords. Their performance was assessed before and after
training on these four trained chords, as well as on a separate
set of untrained chords. Both execution time andmean devia-
tion improved in a chord-specific fashion, with only marginal
improvement on untrained chords. This suggests that chord
learning mostly occurs through the formation of specific
motor representations for the trained chords. Previous studies
have reported some degree of generalization in similar tasks
(8, 9). However, these effects were asymmetric: improvements
in extension-only chords generalized to flexion-only chords,
but not the reverse (9). In our experiment, the trained chords
spanned a range of flexion and extension of different fingers
(see METHODS), such that generalization in force or muscle
space should have become visible in our paradigm. However,
we observed only marginal improvements, suggesting that
generalization was limited for the specific chords that partici-
pants trained on. The exact patterns of generalization between
chords remains an interesting topic for future research.

Furthermore, it remains unclear where chord-specific
learning occurred along the continuum of visual, cognitive,
and motor processes required for chord execution. Our
results do not allow a definite answer. However, some initial
insights can be gleaned by assessing which factors make

some chords more difficult than others in the first place.
Clearly, chords become more challenging as the number of
involved fingers increases. However, the number of fingers
alone does not fully capture the systematic differences in
mean deviation across chords. To determine the most likely
explanation for these differences, we compared a range of
different models. The model based on the muscle activity
patterns outperformed one based on visual complexity. The
model also outperformed a model based on finger and force
directions, which, for example, captures the fact that ring
finger extension ismore difficult to achieve than index finger
flexion. This is especially important as we use the same low
force level for extension and flexion, even though the maxi-
mum voluntary contraction (MVC) for finger flexion is
approximately twice as large than for extension. Although
the different difficulty of the constant force target across fin-
gers and directions may certainly have contributed to our
results, the relatively poor performance of the force model
indicates that muscle activity pattern required to produce
the chord was a more important factor for predicting diffi-
culty. In summary, this suggests that some (if not all) of the
chord difficulty is due to the lack of suitable muscle syner-
gies, rather than due the cognitive or perceptual load of
interpreting the complex visual cue or the amount of force
that needs to be produced.

Mean deviation also scaled with both the magnitude of
muscle activity and the similarity of chord muscle activity
patterns with those occurring during everyday actions. The
latter finding provides evidence that chord performance is
indeed constrained by existing synergies. Chords requiring
muscle activity patterns similar to those used in everyday
motor tasks (e.g., precision/power grip) are easier to achieve
compared with those absent in the natural hand repertoire.
In other words, learning novel muscle activity patterns may
require expanding the current repertoire of motor represen-
tations beyond the limited set of existing synergies.

In a related set of studies, participants were asked to
acquire an arbitrary mapping between muscle activity or
joint kinematics of the upper limb and the two-dimensional
position of a visual cursor (20–24). To some degree, this
paradigm(s) requires to learn novel muscle activity patterns.
On the other hand, participants were free to choose any pat-
tern in N-dimensional EMG or kinematic space that would
map to the same two-dimensional cursor movement. With
only two controlled dimensions, it is likely that they chose
muscle activity patterns that were closer to their natural rep-
ertoire. A key advantage of our paradigm is that it encom-
passes independent flexion and extension across the five
fingers, forcing participants to acquire specific muscle activ-
ity patterns, “non synergistic” ones.

The new paradigm introduced in this work is designed to
be used in future research addressing the neural correlates
of synergy learning with different techniques, including
noninvasive brain stimulation and neuroimaging. In this
regard, one important question is where new synergy repre-
sentations are formed along the motor hierarchy—from
action selection to execution. Previous work suggests that, in
sequence learning, new skill representations are not purely
motoric but operate at a more abstract level, controlling the
sequence of individual movements rather than directly
encoding the corresponding muscle activity patterns (25).
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According to this view, sequence productionmay rely on the
sequential recombination of existing muscle synergies. In
support of this idea, a recent study showed that plastic
changes accompanying sequence learning mostly occur in
high-ordermotor cortical areas, while being almost absent in
the primary sensorimotor cortex (26, 27). Chord learning
may share similar principles. Novel muscle activity patterns
may be achieved through high-level skill representations
combining existing muscle synergies (7). Alternatively,
chordsmay be achieved through the formation of newmotor
representations at lower hierarchical level, such as in M1 or
spinal cord. We found that the produced force patterns dur-
ing the hold phase remained largely unchanged after 5 days
of practice. This feature of our design allows for the examina-
tion of neural and muscle activity pattern changes across
learning without confounding effects from behavioral
variability.

A second important question is howmultifinger hand con-
figurations are represented across motor cortical areas. Do
multifinger representations reflect the linear combination of
single-finger activity, or do they involve completely orthogo-
nal representations? Current findings are inconclusive.
Intracortical recordings performed in the human premotor
cortex support the pseudolinear hypothesis (28). On the
other hand, fMRI activity during single- andmultifinger sen-
sory stimulation suggests that the activity patterns for the
individual fingers combine predominantly linear in area 3b
but show a rich and nonlinear behavior in M1 (29). Our task
now offers ample opportunity to address these problems in
future studies by comparing fMRI activity for single- and
multifinger chords after practice.
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