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Abstract (150/150) 22 

Perceptual decisions are classically thought to depend mainly on the stimulus characteristics, 23 

probability and associated reward. However, in many cases, the motor response is considered 24 

to be a neutral output channel that only reflects the upstream decision.  Contrary to this view, 25 

we show that perceptual decisions can be recursively influenced by the physical resistance 26 

applied to the response. When participants reported the direction of the visual motion by left 27 

or right manual reaching movement with different resistances, their reports were biased 28 

towards the direction associated with less effortful option. Repeated exposure to such 29 

resistance on hand during perceptual judgments also biased subsequent judgements using 30 

voice, indicating that effector dependent motor costs not only biases the report at the stage of 31 

motor response, but changed how the sensory inputs are transformed into decisions. This 32 

demonstrates that the cost to act can influence our decisions beyond the context of the 33 

specific action. 34 

35 
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 36 
Introduction 37 

In laboratory experiments, participants are often asked to make decisions that are purely 38 

based on the features of the sensory input – a process that we refer to here as perceptual 39 

decision-making. However, in many of our daily situations, decisions are made in a 40 

behavioural context, in which the action that follow our decisions can differ dramatically in 41 

terms of required physical effort (or the motor cost). For example, in the orchard, one may 42 

aim to pick the reddest-looking apple from the tree. Some of the apples may be hanging high-43 

up on the tree, which will require more effort to pick compared to other fruits hanging on the 44 

lower branch.  In such situations, does the difference in the motor cost between the options 45 

influence the decision of which fruit to pick? If so, is such influence a result of serial 46 

integration between the perceptual decision (i.e. decision based on the visual feature) and the 47 

motor decision (i.e. decision for action selection to avoid the effortful action) at the output 48 

stage, or is the perceptual decision itself is affected by the cost on the downstream action? It 49 

has been shown that physical effort is used in motor planning [1-2], and the physical effort to 50 

obtain a reward can influence behavioural decisions [3-4].  Moreover, the uncertainty in 51 

perceptual decisions is transmitted to the motor system, influencing the parameters of action 52 

control [5].  However, it remains unclear whether the motor cost is simply integrated with the 53 

perceptual decision to optimise the expected utility [6-7], or whether the preceding 54 

experience of unequal motor costs can recursively influence the perceptual decision itself. 55 

Here, we show that manipulating the motor response cost for arm movements during a visual 56 

motion discrimination task changes not only the decision when responding with the arm, but 57 

also when reporting the perceptual decisions verbally.  58 

 59 

 60 

61 
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 62 
Results 63 

First, in Experiment 1, we examined if the decision of the visual motion direction can be 64 

biased when one of the two responses requires more effort. Ten right-handed participants 65 

observed a moving random-dot stimulus and made decisions about the direction of motion 66 

(leftward or rightward) [8]. Participants held two robotic manipulanda, one in each hand.  67 

They indicated their decision by either moving their left hand (indicating leftward decision) 68 

or right hand (rightward decision, Figure 1A). In the baseline phase, the resistance for 69 

moving the manipulanda was the same for both hands (velocity dependent resistance: 0.10 70 

Ns/cm). In the subsequent induction phase, the resistance for the left hand increased by a 71 

small amount each time the participant moved the left hand (0.0008 Ns/cm; Figure 1B).  72 

Because the change was gradual, most of the participants did not report becoming aware of 73 

the increased motor cost when asked afterwards, even though their left hand was eventually 74 

exposed to 1.8 times greater resistance than the right (0.18 Ns/cm for left, 0.10 Ns/cm for 75 

right; see Methods and Figure 1- figure supplement). This procedure was employed to 76 

minimise any cognitive strategy participants may use, such as explicitly avoiding the costly 77 

hand response regardless of the decision about the visual stimulus. In the test phase, 78 

participant then continued to perform the visual discrimination task under the accumulated 79 

asymmetry in manual resistance. We plotted the proportion of rightward judgment against 80 

different stimulus intensities, and determined the point of subjective equality (PSE, the point 81 

at which participants judge 50% of the trials to go rightward) for both the baseline and the 82 

test phase (Figure 1D). If the increased physical resistance for expressing leftward judgments 83 

was incorporated into the decision, the proportion of ‘leftward’ judgements should decrease 84 

in the test phase compared to the baseline, resulting in the shift of PSE towards the left 85 

(Figure 1D). As expected, the PSE shifted towards the left from baseline to test phase (-86 
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4.33%, paired t-test (2-tailed): t9=2.43, p=0.038, d=0.76, 8/10 individuals showed the effect) 87 

(Figure 1D-E, Figure 1-source data). This indicates that the participants started to avoid 88 

making motion direction decisions in which the response is costly. 89 

 In Experiment 2, we examined whether motor cost and visual features need to be 90 

directly associated, or whether simply gaining experience of one action being more effortful 91 

than the other is sufficient to bias subsequent decisions. The baseline and the test phase 92 

involved judging direction of visual dot motion, as in Experiment 1.  However, the induction 93 

phase was now replaced with a simple reaching movement, in which the participants moved 94 

their left or right hand according to a simple leftward or rightward arrow presented in the 95 

centre of the screen. As in Experiment 1, the resistance for moving the left hand was 96 

gradually increased.  The motor cost during the induction phase was not associated with any 97 

motion direction judgement; the participants were only exposed to the gradually increasing 98 

motor cost differences between the two hands. Again, PSE significantly shifted leftwards in 99 

the test phase (Figure 1E, Figure 1-source data; baseline vs. test; mean -4.26%, paired t-test 100 

(2-tailed); t8=3.91, p=0.005, d=1.3, 8/9 individuals showed the effect). This indicates that the 101 

direct association of higher motor cost with a specific decision during the induction phase is 102 

not critical for inducing the bias. This may suggest that the (implicit) knowledge about the 103 

response costs is sufficient to recursively influence the decision. Alternatively, these results 104 

could indicate that the bias is only transiently induced during the test phase itself.   105 

 In Experiment 1 & 2, we showed that manual motor costs reliably bias decisions that 106 

involve these manual response. Where in the process of translating a stimulus into a response 107 

does this bias arise?  A simple model posits that decision-making occurs in three sequential 108 

stages [9]. First, features of the sensory input are extracted and encoded as a sensory 109 

representation. Second, a categorical decision is made based on this sensory representation 110 

(decision layer). Third, the output from the decision layer is transmitted to the relevant 111 
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effector for the response (Figure 2). One possibility is that the motor cost only biases the 112 

decision layer in the context of the specific response [10] (Figure 2A). In other words, the 113 

motor cost only influences decisions when the participant anticipates to perform the action 114 

associated with the motor cost, thus, the decision simply takes into account the upcoming 115 

motor costs. Alternatively, the repeated exposure to the manual motor cost may affect the 116 

perceptual decision about this type of stimulus in general, no matter which effector is used to 117 

make a response (Figure 2B) [11-12]. Finally, the motor cost could also directly bias the 118 

sensory representation (Figure 2C), affecting the initial encoding of the information before it 119 

is transmitted to the decision layer. Only in the two latter scenarios, should the bias observed 120 

during the manual decisions generalise to decisions expressed with a different effector. In 121 

Experiment 3 we therefore examined whether a hand-specific motor cost could also influence 122 

a visual judgement that used a vocal response. A manual to vocal transfer of the motor cost 123 

effect would indicate that the motor cost influences the decision about the visual stimulus 124 

itself (i.e. perceptual decision), not the decision coupled with the effector selection (i.e. motor 125 

decision).  126 

Fourteen new participants performed the visual motion discrimination as in 127 

Experiment 1. In the induction phase, we gradually increased the resistance for one of the 128 

hands while participants performed manual decisions as in Experiment 1. The resistance was 129 

increased for half of the participants (7) on the left hand, and for the other half on the right 130 

hand, accounting for any hand-dependent effects. To analyse these left and right resistance 131 

increase data together, we aligned the data depending on the side of the resistance applied by 132 

assigning negative motion coherence level to the motion direction associated with the 133 

direction of the resistance. During the manual task participants moved their left or right hand 134 

according to their perceived motion direction. For the vocal task, participants indicated the 135 

direction of the motion by vocally responding “left” or “right” (Figure 3- figure supplement 136 
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A) without moving their hands. During the baseline and the test phase, participants alternated 137 

between tasks: each 10 trials of manual judgments were followed by 10 trials of vocal 138 

judgements (Figure 1C). This “top-up” procedure is commonly used to assess the effect of 139 

sensory adaptation on the subsequent perceptual judgements [13]. If the bias induced by the 140 

motor cost is affecting the decision regardless of the response effector, the vocal decision 141 

should be also biased towards the same direction as the manual decision. 142 

For the manual task, the result of Experiment 1 was replicated.  The exposure to the 143 

resistance made the PSE to shift significantly away from the stimulus associated with the 144 

costlier movement (baseline vs. test, mean: -7.06%, paired t-test:t13=2.94, p=0.012, d=0.78, 145 

12/14 individuals showed the effect) (Figure 1E, Figure 1-source data). More importantly, for 146 

the vocal task, judgement also shifted to the same direction as the manual task (baseline vs. 147 

test, mean: -3.00%, paired t-test:t13=2.44, p=0.030, d=0.65, 12/14 individuals showed the 148 

effect) (Figure 1E, Figure 1-source data), even though the motor cost for the vocal responses 149 

was not manipulated. Since the direction of manual motor cost was counterbalanced across 150 

participants, this finding cannot be explained by any time-dependent drift of the decision 151 

towards one of the directions. This result suggests that the bias induced by the manual motor 152 

cost transfers to decisions expressed with other effectors.  153 

Although in Experiment 3 the response effector differed between the manual and the 154 

vocal task, the abstract response code (“left”/ “right”) remained the same between the two 155 

tasks. Therefore, it is possible that the manual motor cost got associated with these semantic 156 

labels, but did not necessarily influence the stimulus-based perceptual decision itself. To test 157 

this possibility, in Experiment 4, we again examined the manual-to-vocal transfer of effect 158 

caused by the motor cost, but this time varied not only the response effector, but also the 159 

response codes between the two tasks. Twelve new participants performed visual motion 160 

judgements, where in the baseline and the test phase, manual decisions and the vocal 161 
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decisions alternated in a mini-block of 11 and 7 trials, respectively (Figure 3A). The 162 

induction phase involved only the manual task, with gradually increasing left hand resistance. 163 

As in Experiment 3, the manual task was a left-right motion discrimination task. The vocal 164 

task, however, was changed to the motion detection task. Participants were asked to detect a 165 

near threshold coherent motion by vocally responding “yes” or “no”. The to-be-detected 166 

motion direction (left or right) was instructed at random before each trial (Figure 3- figure 167 

supplement B). Half of the trials included left or right coherent motion, and in the other half, 168 

the coherent motion was absent (0% coherence).  169 

 For the manual task, a significant shift of PSE was observed again, reflecting the 170 

avoidance of the costly decision (baseline vs. test, mean: -4.39%, paired t-test :t11=2.88, 171 

p=0.015, d=0.75, 9/12 individuals showed the effect) (Figure 1E, Figure 1-source data). For 172 

the vocal task, participants’ judgement criterion for leftward motion detection became more 173 

conservative after being exposed to the manual motor cost, which was not the case for the 174 

rightward motion. The interaction between the phase of the experiment (baseline/test) and the 175 

visual motion direction (left/right) was significant, F1,11=6.76, p=0.025, =0.36) (Figure 3B, 176 

Figure 3-source data). Since the manual task required a left-right decision and the vocal task 177 

a yes-no decision, the abstract response code of these two task were different. Therefore, 178 

significant manual-to-vocal transfer cannot be simply explained by the motor cost inducing a 179 

bias for choosing a particular type of abstract response label. Instead, the results indicate that 180 

the motor cost influenced the perceptual decision – i.e. the decision based on the feature of 181 

the visual stimulus input - itself.  182 

Together, these results demonstrate that the motor cost on the downstream response 183 

can recursively change how the input visual stimulus is transformed into the decision; at the 184 

level of sensory representation or at the decision layer. In contrast to the criterion, the 185 

sensitivity  (d’) for the motion detection did not change for either visual motion direction 186 
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(F1,11=0.44,  p=0.52,η2=0.04) (Figure 3- figure supplement C). This indicates that the motor 187 

cost did not increase or decrease the signal to noise ratio (gain) of the motion signal to one 188 

specific direction. 189 

Until now, we have shown that the motor cost can bias the decision based on a visual 190 

stimulus independent from the response effector or abstract response code. Finally, using a 191 

model-based approach, we tried to elucidate the processing stage in which the motor cost 192 

could have influenced the decision. We analysed both reaction time and choice data of the 193 

manual tasks (Experiment 1, 2, 3 & 4; n=45) under the framework of diffusion decision 194 

model (DDM) [14].  The DDM postulates that a decision variable temporally accumulates 195 

sensory evidence in favor of one decision (by increasing its value) or in favor of the 196 

alternative decision (by decreasing its value). When the decision variable hits a certain 197 

threshold level (decision bound), the decision is made and the response is triggered [14-15] 198 

(Figure 4- figure supplement1 A). Under this framework, we examined whether the source of 199 

the manual decision bias that transferred to the vocal decisions occurred in the sensory 200 

representation of the stimulus that is accumulated (Figure 2C; sensory representation) or in 201 

the decision bound that is used to make the decision (Figure 2B; decision layer) [14-16].  202 

If the bias is introduced at the sensory representation stage, it would increase the input 203 

signal (the perceived motion coherence) in the easier direction. We exclude the possibility 204 

that the motor cost made the sensory representation of the preferred direction more accurate 205 

(increased gain of the signal only in one direction) as we did not observe the discrimination 206 

sensitivity change (JND: just noticeable difference) between the baseline and the test 207 

condition across different experiments (t44=0.26, p=0.77). Rather assumed that the motor cost 208 

would shift evidence accumulation towards the easier direction (sensory evidence model; 209 

Figure 4- figure supplement1 B). With this bias, the decision variable would drift towards the 210 

preferred decision even in the absence of any coherent visual motion.  211 
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Alternatively, we considered the possibility that the motor cost changed the decision 212 

bounds (decision layer), i.e., the amount of evidence required for each of the choices. This 213 

change can be parsimoniously modelled as shift of the starting point of the accumulation 214 

process, which will consequently change the distance from the starting point to each decision 215 

bound (starting point model; Figure 4- figure supplement1 C). The sensory evidence and 216 

starting point models predict qualitatively similar pattern of choice probabilities (i.e. bias 217 

towards the direction to avoid the motor cost), but different pattern of decision times for 218 

correct trials across different motion intensities (Methods, Figure 4- figure supplement1 B-C). 219 

Therefore, by comparing whether which of the two models explains our data better [16-17] 220 

(see Materials & Method), we may infer the source of the bias. 221 

Additionally to the starting point model and the sensory evidence model, we also 222 

fitted a model that allowed for both shifts simultaneously (full model). This allows us to 223 

directly compare the effect of each parameter. Also, to check whether the starting point or the 224 

sensory evidence shift was necessary to explain the data in the first place, we also prepared a 225 

baseline model which we did not model the starting point and/or the evidence accumulation 226 

shift, but only modelled the difference in non-decision time (baseline model: see Material & 227 

Methods). Note that, since we did not record the reaction time of the vocal decisions, this 228 

analysis was restricted to model the bias during the manual decisions.  229 

First, we fit each model to the average group data and compared the BIC weights by 230 

converting the Bayesian Information Criterion (BIC) for each model [18]. We then repeated 231 

this process 10,000 times, each time drawing 45 participants from our sample with 232 

replacement to obtain an estimate of the reliability of our conclusion. The results (Figure 4C-233 

D, Figure 4-source data, Table 1) clearly indicate that the starting point model explained the 234 

data substantially better than the other models.  235 
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Second, we compared the model parameter of the full model fitted to each 236 

participants’ individual data. Consistent with superior fit of the starting point model, we 237 

found a significant shift of the starting point (median; 5.6%, signed rank test :z44=2.50, 238 

p=0.01, d=0.32; Figure 4A, Figure 4-source data), but no significant change in the evidence 239 

accumulation (median; 1.38%, signed rank test :z44=1.15, p=0.25, d=0.21; Figure 4B, Figure 240 

4-source data). Therefore, our data suggests that the motor cost biased the decisions by 241 

changing the decision layer (starting point) that transforms the input signal into the decision.  242 

The DDM also contains a parameter that captures the motor response time that is 243 

independent from the decision (non-decision time; see Material & Methods). In the baseline 244 

phase, there was no significant difference between the non-decision time of the hands 245 

(462.8ms vs. 468.8ms, paired t-test :t44=0.94, p=0.34, d=0.08). However, in the test phase, 246 

although the non-decision time became shorter for both the hands without resistance (dTA: -247 

7.69ms) and the hand with resistance (dTB: -27.7ms), the decrease was larger for the hand 248 

with resistance (paired t-test :t44=2.69, p=0.01, d=0.64). This finding resembles a previous 249 

report [17], which demonstrated that the stimulation of the caudate neuron with visual motion 250 

directional tuning biased monkey’s motion direction judgments towards the neuron’s tuned 251 

direction, but at the same time decreased the estimated non-decision time for the response 252 

(eye movement) to the opposite (non-stimulated) direction.  253 

While the DDM models were only fit to the choice probabilities (psychometric 254 

function) and the RT function of the correct trials (chronometric function, see Material & 255 

Methods), we also checked whether the models could predict the patterns of RTs on error 256 

trials. For this purpose, we simulated individual trials using the estimated group parameters 257 

based on the starting point and the sensory evidence models (Table 2). For the correct trials, 258 

both model simulations showed similar tendencies; the RT reduced for the non-costly motion 259 

stimulus compared to the costly stimulus (Figure 4- figure supplement2 A-B left panel). The 260 
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pattern of the error trial RT differed between the two simulations. For the starting point 261 

model, error RTs were shorter for the costly motions (non-costly decision), whereas the 262 

pattern was opposite for the sensory evidence model (Figure 4- figure supplement2 A,B). 263 

This is because, for the former, the distance between the starting point and the non-costly 264 

decision bound decreases, whereas for the latter, the drift rate increases towards the error 265 

decision direction for the costly stimulus (i.e. non-costly decision) [19]. The pattern of RTs 266 

for the experimental data (Figure 4- figure supplement2 C) was qualitatively similar to that of 267 

the starting point model. Therefore, the general pattern of error RTs supported our claim that 268 

the motor cost induced a starting point shift.  269 

We showed that participants incorporate the cost of the response into the perceptual 270 

decision, and flexibly changes the way of interpreting the sensory environment. To further 271 

investigate the temporal dynamics of these flexible changes, we examined how the induced 272 

bias developed over the course of the 10 (Experiment 3) or 7 (Experiment 4) trials of vocal 273 

decisions following a series of manual decision trials (see detail in the Methods). In 274 

Experiment 3, on average, PSE shift was slightly stronger for the vocal trials that 275 

immediately followed the manual task (mean shift of PSE; -3.51% for the first 5 trials (initial 276 

point of Figure 3C), >-3% for the rest, Figure 3-source data), although this time dependence 277 

did not reach significance (F5, 65=0.60, p=0.75). In Experiment 4, the strength of bias 278 

(criterion shift) significantly decayed depending on the number of trials from the manual task, 279 

showing a stronger bias in the first 4 out of 7 trials (initial 2 time points of the curve. Figure 280 

3D, Figure 3-source data, F4,44=2.70  p=0.042, η2=0.2). These results indicate that the 281 

biasing effect may be relatively short-lived. However, the time scale of the retention is 282 

comparable to common perceptual adaptations, such as motion aftereffects. Mather et al. [20] 283 

shows that on maximum, the motion aftereffect lasts for 10~15 seconds. A single trial of our 284 

task takes at least, 3~4 seconds, so our effect lasted for 9~16 seconds. Therefore, our results 285 
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indicate that, in the absence of any further confirmatory evidence of asymmetric response 286 

costs for the decision, the brain readapts relatively quickly to the new situation, resembling 287 

other examples of spontaneous decay in perceptual and motor adaptation phenomena [20-22].  288 

This shows that while perceptual decisions can be updated relatively quickly and flexibly, 289 

they do exhibit a substantial memory of past motor costs.  290 

 291 

292 
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 293 
Discussion 294 

In this study, we showed that visual motion direction decisions can be biased by the cost of 295 

the action that is used to report the decision (the motor cost). Moreover, we demonstrated that 296 

the motor cost indeed affects the decision about the input stimulus identity, and not only the 297 

decision about which action to select. 298 

Previous behavioural studies have shown that the perceptual decisions can be biased 299 

by changing the frequency (expectation) of stimulus presentation, or by manipulating the 300 

response-reward association for the correct/incorrect decisions [19, 23]. Here we demonstrate 301 

that motor costs associated with the response can also bias the perceptual decisions, even 302 

when the response is made with a completely different effector that is not associated with 303 

increased motor cost (here, verbal instead of manual responses). Therefore, our study 304 

provides evidence that the cost on the response for perceptual decisions, which has been 305 

regarded as downstream output channel of the decision, can recursively influence the 306 

decision of the input stimulus itself. In other words, the observed bias not only reflects the 307 

serial integration of the transient motor cost into the ongoing decision [6], but represents a 308 

more global change in the way of transforming the sensory input to the decision, by taking 309 

the prior experience of the motor cost into account [24].   310 

Congruent with our results, a recent study has shown that asymmetric biomechanical 311 

costs induces a bias into the decisions, and that this bias cannot be explained by strategically 312 

choosing the easier option when perceptual uncertainty is high [25]. The critical contribution 313 

of our study is to show that this influence on the decision process is not limited to the 314 

judgments involving the asymmetric motor cost, but generalized to judgment using vocal 315 

responses without motor cost manipulation. The present study parsimoniously shows that the 316 

motor cost influence is not simply due to the bias of decision at the motor 317 
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preparation/execution stage.  318 

Our DDM analysis readily explains the effect of motor cost as the change in the 319 

required amount of input evidence (i.e. shifts of the starting point) for the decision.  Even 320 

though only fitted to the reaction times for correct trials [15], this model also correctly 321 

predicted the RT pattern for error trials. These findings are consistent with previous literature 322 

that shows that increasing the presentation frequency or amount of reward for one of the 323 

choice biases decision in a way that can be best modelled as a starting point shift [19]. Indeed, 324 

it has been suggested that shifting the starting point of accumulation process is the optimal 325 

solution to account for such contextual changes [26-27]. It should be noted, however, that 326 

alternative models involving collapsing bounds may perform better in situations in which the 327 

stimulus strength varies randomly [28-29, but also see 30].  328 

Electrophysiological studies have shown that the electrical stimulation of parietal or 329 

basal ganglia neurons can bias perceptual decisions [16-17]. These effects were explained by 330 

shifts of the starting point in the DDM framework (or equivalently the decision bounds), thus 331 

the change in the decision layer of the perceptual task. Therefore, these brain regions are 332 

likely candidate neuronal substrates where the motor cost interacts with the sensory input to 333 

bias the perceptual decision. Neurons in the lateral intraparietal area (LIP) code the feature 334 

that is relevant for the visual decision, independent of response type [11].  Experiment 3 & 4 335 

similarly suggested motor-induced changes for the perceptual decision is independent of the 336 

effector used for response.  The subcortical network in the basal ganglia has been suggested 337 

to represent the cost of action or the “vigour” of movement initiation [31]. Prolonged 338 

exposure to altered motor costs during perceptual decisions may similarly change the 339 

response properties of these areas, altering how the system judges the sensory evidence from 340 

the environment. 341 
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How does our current finding relate to the existing theories of perceptual decision 342 

making? One of the recent theories is the intentional framework [32]. This framework posits 343 

that decisions and actions are tightly coupled, with each decision maker separately 344 

accumulating the sensory evidence until the threshold level for the specific action is reached. 345 

In this scenario, any decision bias induced by imposing a motor cost to a specific action 346 

would not transfer to a decision performed by a different action, as there is no explicit 347 

communication between the multiple decision makers. Thus, our results indicate that 348 

perceptual decisions are either made centrally by a high-order process that is common across 349 

different actions [12, 33], or at least that different local decision makers exhibit a certain 350 

degree of mutual dependency, such as a shared cost (value) of the input stimuli (external 351 

environment).  352 

In conclusion, we demonstrate that the motor cost involved in responding to a visual 353 

classification task is integrated into the perceptual decision process.  Our everyday perceptual 354 

decisions seem to be solely based on the incoming sensory input.  They may be, however, 355 

influenced by the preceding history of physical cost of responding to such input. The cost of 356 

our own actions, learned through the life-long experience of interacting with the environment, 357 

may partly define how we make perceptual decisions of our surroundings.358 
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 359 

Material & Methods 360 

Participants 361 

A total of 52 participants (Experiment 1: 12 (6 females), Experiment 2: 10 (5 females), 362 

Experiment 3: 16 (8 females), Experiment 4: 14 (5 females); with ages ranging from 18 to 38 363 

years (M=25.5) participated in the study. All had normal or corrected-to-normal vision, were 364 

right-handed and naive regarding the experimental purpose. None of them declared any 365 

history of neurological diseases. All participants gave informed written consent, and all 366 

procedures were approved by the UCL ethics committee. No statistical test was run to 367 

determine sample size a priori. The chosen sample sizes are similar to those in previous 368 

publications related to perceptual decisions [34-35]. Furthermore, we replicated the result of 369 

Experiment 1 in the subsequent Experiment 2, 3 & 4 using the similar sample sizes. 370 

 371 

General Apparatus 372 

Participants were seated comfortably in front of a virtual environment setup, which has been 373 

described in more detail previously [36]. The visual stimulus was presented on the display, 374 

which was mounted 7 cm above the mirror. The mirror was mounted horizontally above the 375 

manipulanda, preventing direct vision of the hands but allowed participants to view a visual 376 

scene on the monitor. During the task, participants leaned slightly forward with their 377 

forehead supported by a forehead rest, maintaining the distance from the eye and the mirror 378 

constant (25 cm). As a result, the viewing distance from the eye to the monitor was 32 cm. 379 

The chair was placed at the position where the participants could most comfortably perform 380 

the reaching movement using the manipulanda. Depending on the judgement of the visual 381 

stimulus (see below), they made 15 cm straight reaching movements while holding onto a 382 

robotic manipulandum (update rate 1 kHz, recording of position and force data at 200 Hz) 383 
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using their left or right hand (Figure 1A). The hand positions were represented by white 384 

circles (cursors, 0.3 cm diameter) located vertically above the real positions of the hands. The 385 

movement were executed from a starting box (unfilled white squares, 0.5 cm size, 6 cm to the 386 

left and right from body midline) to a target box (unfilled white squares, 1 cm size). 387 

 388 

Visual motion stimulus 389 

In the centre of the screen, random-dot motion stimulus was presented [8] (Figure 1A). In a 9 390 

deg diameter circular aperture, dots were presented in a density of 1.7 dot/deg2. The speed of 391 

the dots was 10 deg/sec. For each trial, 0%, 3.2%, 6.4%, 12.8%, 25.6%, or 51.2% of the dots 392 

moved coherently to the left or the right. All other dots moved in a random direction, picked 393 

for each dot separately between 0 and 360 deg.   394 

 395 

Experiment 1 396 

Task and the movement practice 397 

The trial started with the participants moving the two cursors into the starting boxes. After a 398 

delay of 800ms, a random-dot stimulus was presented. Participants were instructed to judge 399 

the direction of the visual motion (left or right), and to make a ballistic reaching movement to 400 

the target with either hand. The left judgement required left hand movement, and the right 401 

judgement required right hand movement. Initiation of the hand movement made the dot-402 

motion stimulus disappear [37]. The stimulus also disappeared if no response had been made 403 

after 750ms from the stimulus presentation. Participants were asked to start moving (make 404 

their decisions) as quickly as possible, but before the stimulus disappeared. After the 405 

movement, the hands were automatically pushed back near to the starting boxes.  406 

 To maintain stable movement kinematics throughout the experiment participants 407 

underwent three different types of practice sessions before the main experiment. First, 408 
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participants responded to a series of 100% coherent leftward or rightward dot motion trials. 409 

Participants were asked to perform their reaching movement with a peak velocity of >40 cm/s, 410 

and land the cursor within 1.5 cm from the target. When a trial fulfilled this criterion, the 411 

visual target “exploded”, informing the participants about the success of the movement. Each 412 

training block consist of 48 trials, and the participants continued this training until their 413 

success rate exceeded 65% within a block. Next, participants performed three blocks of the 414 

same task but using the graded coherence levels as used in the main experiment (66 trials 415 

each). Participants were particularly instructed to initiate the response before the stimulus 416 

disappeared. Feedback information about the movement kinematics was also presented (see 417 

above). Participants were clearly informed that the feedback was not about whether the 418 

motion direction judgement was correct or incorrect, but about whether their motor 419 

performance matched the requirements.  Finally, participants performed three blocks of the 420 

same task without movement feedback. Participants who could not perform the movements 421 

according to the speed criterion did not proceed to the main experiment (2 participants).  422 

 423 

Structure of the experiment and the resistance control 424 

There were three phases in the main task; the baseline phase, induction phase and the test 425 

phase. Participants performed the same motion direction judgment throughout the experiment, 426 

but the resistive force they were exposed during each of the hand movement was different 427 

between the phases.  428 

Each phase consisted of 5, 15, 5 blocks of trials, respectively. Each block contained 429 

66 trials, and each the 11 movement direction x coherence level combinations was repeated 6 430 

times in each block.  431 

 The resistive force (f) was velocity dependent, calculated as from the equation;  432 

 433 
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where v denotes for the movement velocity, and α denotes for the coefficient of the viscosity 434 

(Ncm/s). Here, negative value indicates the force against the movement direction.   435 

In the baseline phase, the coefficient was set to 0.10 Ns/cm for movements of either 436 

hand. In the induction phase, the resistance increased by 0.0008 Ns/cm for each left hand 437 

movement. The strength increased until the coefficient reached 0.18 (Ns/cm), and this value 438 

remained for the rest of the induction phase and the test phase (Figure 1B; upper panel). 439 

Progression of the actual peak value of the resistive force (N) through the experiment is 440 

presented in Figure 1- figure supplement. 441 

 Our aim of gradually increasing the resistance force was to make the resistance 442 

implicit as possible to the participants, avoiding any cognitive strategy to be involved when 443 

performing the task. After the experiment we assessed their awareness using three questions. 444 

We first asked participants whether they had realised any change in the task during the 445 

experiment”, and then more explicitly “whether they had realized that the resistance 446 

increased for either of the hand”. Only the participants clearly stating “no” to both of the 447 

questions were included in the analysis. Two participants who clearly realised the increased 448 

left hand resistance (answer “yes” to both of the questions) were excluded from the analysis. 449 

The same procedure was adopted for the remaining experiments; 1, 2, and 2 participants were 450 

excluded from the analysis of Experiment 2-4, respectively. 451 

 452 

Analysis 453 

Movement onset was defined as the point when the movement velocity exceeded 2.5 cm/s. 454 

Reaction time was defined as the time elapsed between the onset of the visual stimulus to 455 

movement onset. Reaction times smaller than 100ms or larger than 850ms were excluded 456 

from the analysis, since the former decision is unlikely to be based on the visual motion, and 457 

the latter is likely to be made after the stimulus disappearance. Movement end was defined as 458 
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movement velocity falling below 2.5 cm/s. If both hands moved, the hand with the larger 459 

movement amplitude was taken as the participant’s decision (leftward or rightward) on that 460 

trial. Probability of detecting a slight movement for the non-judged hand was 1.9% of all of 461 

the trials across 4 experiments. When the movement amplitude of each judged and the non-462 

judged hand was calculated, in Experiment 1, the average amplitude was 15.4 cm and 3.2 cm 463 

respectively. For the movement of the non-judged hand, the movement amplitude that 464 

exceeded 2SD from the mean movement amplitude was 5 trials for 1 participant, 1 trial for 2 465 

participants and 0 trials for the rest of the participants. We confirmed that excluding these 466 

few trials did not affect any of the subsequent analysis performed on this data. Same 467 

confirmation was also done for Experiment 2 (judged; 13.93cm, non-judged; 0.23 cm; above 468 

2SD: 3 trials for 1 participant, 2 trial for 1 participant, 1 trial for 1 participant), Experiment 3 469 

(judged; 15.5cm, non-judged; 2.1 cm; above 2SD: 0 trial for all of the participants) and 470 

Experiment 4 (judged; 15.3cm, non-judged; 2.6 cm; above 2SD: 0 trial for all of the 471 

participants). 472 

For each participant, the percentage of ‘right’ judgement responses for each visual 473 

motion coherence level was calculated.  Logistic regression was used to describe the function 474 

of participant’s response against the motion strength. The point of subjective equality (PSE), 475 

i.e. the motion coherence level at which the participant answered “rightward” in 50% of the 476 

trials was estimated from each regression. This was done independently for the baseline and 477 

the test phase, and the PSEs between the two phases were compared using paired t-test (two-478 

tailed). As for all other statistical comparisons, Levene’s test was used to confirm the equality 479 

of variance before performing this statistical comparison. We additionally confirmed that all 480 

of the result from the above parametric tests can be replicated by the non-parametric 481 

Wilcoxon’s signed rank test, which shows that our data is not biased by the particular 482 

statistical test used to assess the results. 483 
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 484 

Experiment 2 485 

The experiment was largely similar to Experiment 1, except that during the induction phase, 486 

reaching movements were not associated with any visual motion judgments. Participants 487 

were required to make a left or right hand reaching, according to the arrow presented in the 488 

centre of the screen, which pointed either to the left or to the right. Otherwise, the procedure 489 

was equivalent to Experiment 1. 490 

 491 

Experiment 3 492 

The structure of the experiment was similar to Experiment 1 & 2; where baseline phase was 493 

followed by an induction phase, and finally with the test phase. In the induction phase, the 494 

resistance for one of the hands slowly increased while the participants performed the manual 495 

perceptual decision about the dot motion (moving left hand for leftward motion, and right 496 

hand for right motion). The resistance increased on the left hand for half of the participants 497 

(7) and on the right hand for the other half, aimed to account for any hand- dependent effects. 498 

For the dot motion, ten different strength (i.e. coherence level of the motion) were used (± 499 

3.2%, ±6.4%, ±12.8%, ±25.6%, ±51.2%; negative value indicates leftward motion, and the 500 

positive for the rightward motion). The induction phase involved 14 blocks of 60 trials each.  501 

During the baseline and the test phase, participants alternated between responding to 502 

the visual motion manually (manual task) or vocally (vocal task). During the manual task 503 

participants moved their left or right hand according to their perceived motion direction. For 504 

the vocal task, participants were asked to indicate the direction vocally without moving their 505 

hands. The vocal task started with a tone. After 1500ms, a random-dot motion stimulus was 506 

presented for 500ms. Participants were asked to judge whether they perceived a motion 507 
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direction towards the left or to the right, by vocally answering “left” or “right”. Their 508 

response was recorded by the experimenter.  509 

Each 10 trials of manual judgments were followed by 10 trials of vocal judgements 510 

(mini-block; Figure 1C, Figure 3- figure supplement A). Within a mini-block, the manual and 511 

the vocal tasks were presented serially, and this structure was repeated four times within a 512 

block (in total, 80 trials per block). Participants performed 4 blocks each for the baseline 513 

phase and the test phase.  514 

 515 

Analysis 516 

The analysis of the manual task was similar to the above experiments. To analyse left and 517 

right resistance increase data together, we aligned the data depending on the side of the 518 

resistance applied, by assigning negative motion coherence level to the motion direction 519 

associated with the direction of the resistance.  This is equivalent to converting the right 520 

resistance increase data to the left resistance increase data; which was the case for 521 

Experiment 1 & 2. The vocal task was analysed similarly to the manual task, in which the 522 

PSE between the baseline and the test phase was compared.  523 

To examine the time-dependent effect of the manual motor cost onto the vocal 524 

decision, we analysed the vocal task data depending on the number of trials from the last 525 

manual trials. To obtain enough trials for the analysis, we calculated the PSE using the first 5 526 

trials of a mini-block of 10 vocal trials. This procedure was repeated by shifting the window, 527 

resulting in 6 analysis ranges (1st-5th, 2nd-6th, 3rd-7th, 4th-8th, 5th-9th, 6th-10th trials). Finally, 528 

PSE of the vocal task during the baseline phase was subtracted from these 6 values. These 529 

values will indicate the change in the strength of the influence of manual motor cost on the 530 

vocal decisions over time. We performed a one-way ANOVA to examine this temporal 531 

change.  532 
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 533 

 534 

Experiment 4  535 

The procedure was generally similar to Experiment 3, with the main difference that the vocal 536 

task was a motion detection task, rather than a motion discrimination task as used for the 537 

manual task. Also, as in Experiment 1 & 2, the resistance increased for the left hand during 538 

the induction phase. The vocal task started with a tone, and the to-be-detected motion 539 

direction (left or right) was instructed (Figure 3A, Figure 3- figure supplement B). After 540 

1500ms, a random-dot motion stimulus was presented for 500ms. The stimulus included 541 

either the near threshold level coherent motion towards the instructed direction or a 0% 542 

coherent random-dot motion. Participants were asked to judge whether they perceived a 543 

coherent motion towards the instructed direction or not, by vocally answering “yes” or “no”. 544 

Their response was recorded by the experimenter. The strength of the motion coherence was 545 

defined individually before the experiment to approximately match 75% correct rate, causing 546 

the percentage correct rate to be between 65% and 85% during the baseline phase of the task.  547 

The aim of the vocal task was to examine whether the bias induced by the motor cost 548 

would transfer to the judgment using the different response effector. Additionally, the task 549 

was designed such that the abstract response code of the manual task (left-right) would be 550 

unrelated that of the verbal task (yes-no). Therefore, the performance of the vocal task could 551 

not be biased by the manual task through its commonality of the effector or response code.  552 

11 trials of manual task were followed by 7 trials of vocal task (Figure 3A). This 553 

combination of manual/vocal task mini-block was repeated for four times in a block. 554 

Therefore, the manual and the vocal tasks were performed serially, similar to Experiment 3. 555 

Participants performed six blocks, during each of the baseline phase and the test phase. The 556 
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induction phase was similar to that of Experiment 1, and contained only the manual tasks, 13 557 

blocks of 66 trials each.  558 

 559 

 560 

Analysis 561 

The analysis of manual task was identical to the above experiments. For the vocal task, 562 

responses for left motion trials and right motion trials were analysed independently. Any trial 563 

in which a hand movement was detected during vocal task was excluded from the analysis. 564 

For each motion direction, the sensitivity (d’) and the bias (criterion; C) were calculated 565 

using signal detection theory [38]. Difference of these measures between the baseline and the 566 

test phase were compared between the leftward and the rightward motion using 2-way 567 

ANOVA (phase (2) x motion direction (2)).  568 

We found that the criterion (C) for the leftward motion became more conservative 569 

after exposed to increased resistance on the left hand (Figure 3B). As in Experiment 3, we 570 

also examined whether the strength of this effect decayed as a function of the number of trial 571 

since the last manual trial. We calculated the d’ and C for both leftward and rightward motion 572 

using the first three trials of the vocal judgment in each mini-block (3trials x 24 mini-blocks 573 

= 72 trials). We repeated this procedure by shifting the window by 1 trial, resulting in the 5 574 

analysis ranges 1st~3rd, 2nd~4th, 3rd~5th, 4th~6th, 5th~7th trial. Then, the values calculated 575 

similarly for the baseline (d’ and C, each for leftward and rightward motions) were subtracted, 576 

to calculate the change from the baseline condition. Finally, to test for a difference in bias for 577 

left and right motions, the left values were subtracted from the right values [i.e. negative 578 

values indicate less sensitive (or more conservative) judgments for leftward motion]. 579 

Intuitively, this shows how the leftward or rightward bias of d’ and the C changes over time 580 

as the temporal (trial) distance increases from the preceding manual judgment trials. We 581 
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performed a one-way ANOVA to examine the temporal change of the left-right bias during 582 

the vocal task.  583 

 584 

 585 

Diffusion Decision Model (DDM) analysis 586 

Data of the manual judgement task from Experiment 1, 2, 3 & 4 (n=45) were re-analysed 587 

together under a framework of Diffusion Decision Model (DDM) [14], to examine the 588 

possible source of the decision bias; whether it is 1) increasing the sensory evidence 589 

favouring one of the decision (change in the sensory representation; Figure 2C, Figure 4- 590 

figure supplement1 B), or 2) shifting the starting point of the evidence accumulation process 591 

more near to one of the decision bounds (equivalent to changing distance to each of the 592 

decision bounds) (change in the decision layer; Figure 2B, Figure 4- figure supplement1 C). 593 

For this, reaction time and the choice data of both baseline and the test phase was 594 

simultaneously modelled with the DDM, and the estimated parameters were evaluated [15-595 

17]. Since we did not obtain the reaction time for the vocal trials, only the manual decision 596 

trials across different experiments were analysed. We analysed only the data for non-zero 597 

motion coherence level (Experiment 3 did not have 0 coherence level condition) and for the 598 

RTs for the correct decision trials, which are established to be well explained by the DDM 599 

[15,39]. The sign of the data from the participants having resistance on the right hand was 600 

flipped (Experiment 3), allowing the data to be analysed together with the left hand resistance 601 

increased participants.  602 

For the baseline phase, the model had five basic parameters; A, B, k, T01 and T02. In 603 

this framework, momentary motion evidence is drawn randomly from a Gaussian distribution 604 

N(μ, 1), where μ is calculated as a motion strength (coherence level: Coh) scaled by the 605 

parameter k: μ= k×Coh. Decision is transformed into action when the accumulated 606 
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momentary motion evidence reaches either of the decision bound; A (right decision) or –B 607 

(left decision). Here, leftward decision is the one with the higher resistance for the response. 608 

Decision time is defined as the elapsed time between the stimulus onset and the time when 609 

the evidence reached either of the decision bound (Figure 4- figure supplement1 A). Reaction 610 

time is the sum of decision time and the non-decision time (T01 for a left and T02 for a right 611 

judgement), where the non-decision time is a pure action processing time that is assumed not 612 

to depend on the amount of the sensory evidence.  613 

The expected value of rightward judgments across different coherence levels can be 614 

calculated as [15]:  615 

 . 616 

 The average decision time for the rightward motion decision can be described as:  617 

,  618 

, and for the leftward motion decision as: 619 

  620 

To explain the change in decision bias observed between the baseline and test phase within 621 

the same model, additional parameters that describe the change in the parameters across two 622 

phases (baseline and test) were added to the above five base parameters (delta parameters). 623 

Three different models with different delta parameter settings were generated. In the first 624 

model (sensory evidence model), the motor cost changed the sensory evidence by changing 625 

the motion coherence by dcoh. Thus, the motion strength in the test phase was μ= 626 

k×(Coh+dcoh). Since we know that the effect of motor cost does not change the 627 

discrimination sensitivity (just noticeable difference: JND), but changes only the PSE (Figure 628 

3C), change in the sensory evidence is modelled as addition to the input stimulus (+dcoh), 629 

rather than as the change in the gain itself (direct change of k). In the second model (starting 630 
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point model), parameter that indicates the shift of the starting point of the accumulation 631 

processes (sp) was added, which will consequently change the amount of evidence required 632 

for each decision. Equivalently, we can think of this parameter as a shift in the two decision 633 

bounds to [A-sp] and [–B-sp], leaving the distance between the two bounds fixed. In the final 634 

model (full model), both coherence level change (dcoh) and the starting point shift (sp) were 635 

added as additional parameters.  636 

In all models across the three models, we also modelled the difference in the non-637 

decision time between the baseline and the test phase. There were 840 (Experiment 3) ~ 990 638 

(Experiment 1) trials of reaching movement between the baseline and the test phase, and the 639 

reaction time is decreased in the test phase compared to the baseline phase regardless of the 640 

motion coherence level (F(1,35)=11.95, p=0.0015, η2=0.255). We assume that this was due 641 

to the reduction of the non-decision time induced by the repetition of the reaching movement. 642 

To account for this, we added an additional parameter modelling the decrease of the non-643 

decision time across the two hands. Since such reduction of the non-decision time may differ 644 

between the left and the right hand, the difference was modelled separately for the right 645 

(dTA) and the left (dTB). Therefore, the non-decision time for the test phase was modelled as 646 

T01- dTA and T02- dTB for right and left, respectively (same model as ref 17).  647 

 As a result, the three DDM models consisted of 8 (sensory evidence model; 5 basic 648 

parameters + dTA + dTB + dcoh), 8 (starting point model; 5 basic parameters + dTA + dTB + 649 

sv), and 9 (full model; 5 basic parameters + dTA + dTB + sv + dcoh) parameters, respectively. 650 

In addition to these three experimental models, we also prepared a baseline model, in which 651 

we fit the baseline and the test phase data only with the delta parameter of non-decision times. 652 

(7 parameter baseline model; 5 basic parameters + dTA + dTB ). 653 

The DDM we used in this study is the most basic one proposed by Palmer et al., [15]. 654 

This simple version of the DDM predicts the choice probabilities (psychometric function) 655 
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and the mean RT function (chronometric function) of the correct trials. Therefore, this model 656 

is sufficient to distinguish between the models of interest – a change in starting point of 657 

evidence accumulation (Figure 4 – Figure supplement1 B-C). A number of extensions to the 658 

DDM framework have been proposed to explain the full RT distributions of correct and 659 

incorrect trials using trial-by-trial variability of the drift rate [14] or by incorporating the 660 

time-dependent decision bounds [40].  While these extensions are important, they do not 661 

change the primary predictions regarding the mean RT and choice probabilities under the two 662 

models. For the sake of parsimony, we therefore use the simpler model here.  663 

The group-averaged reaction time and choice data of the experiments was first fitted 664 

by each of the four models (three models + baseline model), by searching the parameters that 665 

minimized the negative log likelihood of the fit (maximum likelihood estimate). We used the 666 

group-average data, as each individual had a limited number of trials, and the noise level was 667 

rather high. This can induce a bias towards more complex models, as it can over fit the noise. 668 

Using group-average data strongly attenuates this effect [41-42]. To obtain estimates of the 669 

reliability of the group-average fit, we resampled the data 10,000 times across participants 670 

with replacement, and fit the model to each of the averaged resampled data [43]. To select the 671 

best model to explain the data from the above four, the Bayesian Information Criterion (BIC) 672 

[44] was calculated for each model,   673 

, 674 

where logL denotes for log likelihood of the fitted function,  for number of parameters used 675 

for the fit and n for number of data points in the sample. The latter term in the BIC equation 676 

penalises the number of parameters used for the fit. Therefore, smallest BIC among the three 677 

models will indicate the most parsimonious model. To compare the explanative power 678 

between each model in an intuitive way, we converted the BIC values to the BIC (Schwartz) 679 
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weights [18] which expresses the explanatory power of BIC values into ratios among the 680 

candidate models. 681 

 682 

where K is the number of 683 models used to 

explain the data, △BIC(i)  is the difference in BIC from the model with the smallest (best) 684 

BIC. The descriptive statistics (averaged and the 95% confidence interval of the 10,000 685 

bootstrap) of BIC value and the BIC weight distributions are summarised in Table 1. 686 

We also estimated the delta parameters (dcoh, sp) of the full model for each 687 

individual – thereby avoiding possible biases in the parameter estimates when using averaged 688 

data [45]. The parameters were statistically tested against zero (no significant change in the 689 

test phase compared with the baseline phase) using a Wilcoxon’s signed rank test. The impact 690 

of sp depends of the distance between the two decision bounds. Therefore, we normalised the 691 

individual starting point shift (sp) by the estimated distance between the two decision bounds 692 

(sp/[A + B ]). 693 

 694 

DDM simulation analysis for error trial RTs 695 

The parameters of the DDM models were estimated using the proportion of correct decisions 696 

and the RT data for correct trials. To test whether this model could also capture the pattern of 697 

error RTs, we simulated single trial data from the starting point and the sensory evidence 698 

models (10,000 times for each stimulus strength per condition), using the parameters 699 

estimated from the group data (Table 2). In both models, the leftward judgements is costlier 700 

in the test phase. For each simulation, the RT difference between the baseline and the test 701 

phase for both correct and error trials was calculated, separately for the leftward and 702 

rightward motion stimulus. We also calculated the difference in the correct rates. Then we 703 

compared these patterns with the actual experimental data analysed in a same way. 704 
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 834 
Figures & Figure Legends 835 
 836 
Table 1
BIC and BIC weights calculated for different DDM

starting point model sensory evidence model full model baseline model
BIC averaged 346.09 360.37 348.76 432.88

(95% conficence interval) upper bound 433.94 447.89 441.07 547.49
lower bound 335.04 348.64 337.62 401.31

BIC weight averaged 0.7911 0.0006 0.2083 0.0000
(95% conficence interval) upper bound 0.8600 0.4303 0.7445 0.0000

lower bound 0.0600 0.0000 0.1336 0.0000

* BIC and the BIC weights for different DDM models. Values calculated using the group averaged data, and the 95% confidence interval is
calculated from the 10,000 bootstrap resampling is presented  837 
 838 
 839 
Table 2
Parameter estimates for data from Experiment 1-4 for the starting point and sensory evidence model

DDM parameters   k  A B T01(dTA) T02(dTB) sp dcoh
starting point model 0.29 11.76 12.02 460 (-9) 459 (-28) -1.62 0

sensory evidence model 0.29 11.59 12.20 460 (-17) 458 (-22) 0 4.00

* Parameters for the simulations for the error RTs were chosen to be these fitted parameters.  840 
 841 
 842 
 843 

844 



39 
 

 845 
 846 
 847 

 848 
 849 
 850 
 851 
 852 
 853 
 854 
 855 
 856 
 857 
 858 
 859 
 860 
 861 
 862 
 863 
 864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 

Figure 1 875 
A: Participants made 15cm reaching movement to the target with their hand (left or right), in 876 
response to the perceived direction (left or right) of the random-dot motion. B: In all of the 877 
experiments, the baseline phase and the test phase was interleaved by the induction phase, in 878 
which the resistance for one of the manipulandum movement gradually increased. C: In 879 
Experiment 3, the baseline and the test phase included both manual and vocal motion 880 
discrimination, each being serially presented within a 10 trial block. D: Fitted psychometric 881 
function to the probability of a response towards the right in the baseline (blue) and the test 882 
(red) phase of a representative participant (Experiment 1). Negative motion coherence value 883 
indicates the leftward motion (with manual resistance), and positive towards the right 884 
(without manual resistance). E: Shift of PSE from the baseline in Experiment 1, 2, 3 & 4. 885 
Negative value indicates the PSE shift towards the motion direction with resistance (i.e. 886 
decreased judgements towards the motion direction having resistance in their manual 887 
response). Error bars indicate standard error of mean across participants. Data for Figure 1E 888 
is available as Figure 1-source data. *p< 0.05, ** p<0.01 889 
 890 
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 908 
Figure 1- figure supplement 909 
Example of the peak resistive force increase profile in the study. The presented data is force 910 
data from Experiment 1, averaged across trials and participants in each session. Here, each 911 
session contains 66 trials (33 trials for each left and right) of reaching movements. Since the 912 
resistive force is provided in a velocity dependent manner, the variance is reflecting the 913 
variability of the movement velocity across participants. 914 

915 
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 945 
Figure 2 946 
Schematic diagram illustrating the process of perceptual decision making, and the possible 947 
influence of the motor cost on the decision process.  Perceptual decision making consists of 948 
three different processing stages. First, the features of the sensory input are extracted and 949 
encoded as in the sensory representation. Second, the perceptual (categorical) decision is 950 
made based on this sensory representation (decision layer). Finally, the decision is transferred 951 
to the response effector. The motor cost asymmetry during the manual response can affect the 952 
perceptual decision making process in several different ways. (A) The motor cost for the 953 
manual response may only bias the decision layer that involves this response, but leave the 954 
decision layer for different response effectors unaffected. If this is the case, the bias observed 955 
during the manual response should not generalize to the verbal response. (B) The motor cost 956 
may bias the decision layer in general or (C) the sensory representation directly. In either of 957 
the latter two cases, the effect of motor cost should be also observable during the response 958 
using the different effector.  959 
 960 



42 
 

 961 
 962 
Figure 3 963 
A: In Experiment 4, participants made vocal judgements to a yes-no motion detection task, 964 
and manual judgement to a left-right discrimination task.  B: Shift of the criterion of motion 965 
detection from the baseline during the vocal judgement task in Experiment 4 (d' data is 966 
presented in the Figure 3 – Figure Supplement C). Negative value indicates the shift towards 967 
more conservative criterion for the motion detection. C: PSE shift from the baseline 968 
condition in Experiment 3, plotted against the number of trials from the preceding manual 969 
judgements. Negative value indicates the shift of PSE towards the motion direction with 970 
resistance (i.e. decreased judgements towards the motion direction having resistance in their 971 
manual response). D: Vocal motion detection criterion differences between the leftward (with 972 
manual response resistance) and rightward (without resistance) motion (Experiment 4). The 973 
difference is plotted against the number of trials from the preceding manual judgements. 974 
Negative value indicates a more conservative criterion for leftward than for rightward motion. 975 
Error bars indicate standard error of mean across participants. Data for Figure 3B-D is 976 
available as Figure 3-source data.*p< 0.05 977 

978 
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Figure 3- figure supplement 1010 
A,B: The task instruction of the vocal task in Experiment 3 (A) and 4 (B), where the 1011 
participants were asked to vocally discriminate the motion direction (Experiment 3), or asked 1012 
to vocally detect the motion for the instructed direction (Experiment 4).  C: Shift of the d-1013 
prime (sensitivity) of motion detection from the baseline during the vocal judgement task 1014 
(Experiment 4). D: Difference in d’ for leftward and rightward motion direction in the vocal 1015 
judgement of Experiment 4, plotted against the number of trials from the preceding manual 1016 
judgements. Positive value indicates the higher sensitivity for the rightward motion and the 1017 
negative for the higher sensitivity to the leftward motion. Error bars indicate standard error of 1018 
mean across participants. 1019 
 1020 

1021 
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 1048 
Figure 4 1049 
A,B: Histogram of individual starting point shift (A) and the evidence accumulation shift (B) 1050 
calculated from the DDM (full model). Black dotted line indicates the 0% point (i.e. no 1051 
effect), and the red dotted line indicates the median of the distribution (i.e. amount of shift). 1052 
Significant rightward shift of the starting point was observed (median: 5.6%), whereas not for 1053 
the evidence accumulation shift (median: 1.39%).C, D; Fit of DDM to the choice (C) and the 1054 
decision time (D) data averaged across participants (see Methods and Figure 4- figure 1055 
supplement1 Panel C).  Data for Figure 4A-D is available as Figure 4-source data. *p< 0.05 1056 
 1057 
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Figure 4- figure supplement 1 1085 
Schematic diagram explaining the drift diffusion model (DDM) and the simulated choice and 1086 
decision time data. A: DDM model postulates that a decision is transformed into action when 1087 
the evidence favouring one of the choices has been accumulated to a certain threshold level 1088 
(decision bound) (left panel). The model makes a prediction about the pattern of choice 1089 
probability and the decision time in respect to the strength of the motion signal (right panel). 1090 
For the baseline, the starting point of the evidence accumulation is set to 0. B: When there is 1091 
more sensory evidence in favour of rightward motion (red line), the drift speed for the 1092 
rightward decision will increase (left panel), and left would decrease. As a result, a rightward 1093 
decision becomes more likely (shift of psychometric function) and the decision time pattern 1094 
generally shifts to the left, showing a tendency to respond faster for the rightward motion 1095 
(right panel). If the motor cost influences the sensory representation (Figure 2C), we would 1096 
expect this pattern of results (sensory representation model). C: A shift in the starting value 1097 
of the accumulation process induces a prior bias towards a rightward decision, decreasing the 1098 
required amount of evidence for rightward decision compared to the left (left panel). This 1099 
will again bias the decision to favour the rightward decision. Instead of shifting the pattern of 1100 
decision times to the left (as in B), the starting point model predicts an additional offset to the 1101 
rightward and leftward decision time; shorter for the rightward decision and longer for the 1102 
leftward decision. In this model the bias therefore arises from a change in the decision layer 1103 
transforming the sensory representation into the decision (Figure 2B), while the sensory 1104 
evidence itself is not changing.  1105 

1106 
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 1136 
Figure 4- figure supplement 2 1137 
Change of the correct RT, error RT and the correct rate from the baseline to the test phase. A: 1138 
simulated data from the starting point model, B: simulated data for the evidence 1139 
accumulation model, C: actual experimental data (n=45). Left and right indicates the stimulus 1140 
motion direction. The left decision was associated with the increased resistance during the 1141 
test phase. Simulation parameters are based on the estimated parameters from the actual data 1142 
(Table 2). Error bars in C indicate standard error of mean across participants. 1143 

1144 
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Legend for the source data 1145 
Data that can be used to reconstruct the main figures are provided as source data. Data for each panel 1146 
of the figure is separated in different sheets of the excel file, which are named accordingly. 1147 
Figure 1-source data: Individual PSE shift for Experiment 1-4, which is the data summarized in 1148 
Figure 1E. 1149 
Figure 3-source data: Individual criterion shift of the vocal trials (Experiment 4; summarized in 1150 
Figure 3B), individual PSE shift for the vocal trials across different trials (Experiment 3; summarized 1151 
in Figure 3C) and individual criterion shift for the vocal trials across different trials (Experiment 4; 1152 
summarized in Figure 3D). 1153 
Figure 4-source data: Individual starting point shift in the test phase from the baseline phase during 1154 
the manual trials, estimated from the full-model DDM (summarized in Figure 4A), individual 1155 
evidence accumulation shift in the test phase from the baseline phase during the manual trials, 1156 
estimated from the full-model DDM (summarized in Figure 4B), data points consisting the 1157 
psychometric function estimated from the DDM (starting point model) using the group averaged data 1158 
(summarized in Figure 4C) and data points consisting the chronometric function estimated from the 1159 
DDM (starting point model) using the group averaged data (summarized in Figure 4D). 1160 
 1161 
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