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First published May 28, 2008; doi:10.1152/jn.01095.2007. When we
learn a new skill (e.g., golf) without a coach, we are “active learners”:
we have to choose the specific components of the task on which to
train (e.g., iron, driver, putter, etc.). What guides our selection of the
training sequence? How do choices that people make compare with
choices made by machine learning algorithms that attempt to optimize
performance? We asked subjects to learn the novel dynamics of a
robotic tool while moving it in four directions. They were instructed
to choose their practice directions to maximize their performance in
subsequent tests. We found that their choices were strongly influenced
by motor errors: subjects tended to immediately repeat an action if
that action had produced a large error. This strategy was correlated
with better performance on test trials. However, even when partici-
pants performed perfectly on a movement, they did not avoid repeat-
ing that movement. The probability of repeating an action did not drop
below chance even when no errors were observed. This behavior led
to suboptimal performance. It also violated a strong prediction of
current machine learning algorithms, which solve the active learning
problem by choosing a training sequence that will maximally reduce
the learner’s uncertainty about the task. While we show that these
algorithms do not provide an adequate description of human behavior,
our results suggest ways to improve human motor learning by helping
people choose an optimal training sequence.

INTRODUCTION

A game like golf involves learning a number of specific
subskills. Each golf club has a different weight and length and
therefore varying degree of difficulty and accuracy. At the
driving range a novice golfer gets a bucket of golf balls and
practices with each golf club (i.e., skill components). A suc-
cessful player needs to develop a high proficiency with all
clubs. While we may have a coach that closely supervises our
training and tells us which club to practice, most of our training
time is spent alone: we must autonomously choose the skill
component to practice. What factors affect our choices during
training?

In the field of machine learning, this problem is termed
“active learning.” The learner has access to a list of training
examples; each example focuses on a different component of
the task (e.g., a golf swing using the driver). There is no preset
curriculum nor is there an instructor; therefore the learner picks
out its own curriculum, one practice example at a time. Exam-
ples can be repeated if necessary, but the ultimate goal is to
improve in the overall task performance with a minimum
number of examples. How should one pick the training exam-
ples?

There are a number of potential criteria for such a decision.
For example, one could use random exploration to minimize
statistical bias, or select examples to minimize the element of
surprise (Einhauser et al. 2007). In general, we are often faced
with decision whether to exploit known alternatives or explore
unknown ones. How the nervous system makes decisions in
these situations remains an open question (Cohen et al. 2007).
However, Cohn et al. (1996) suggested that in the case of
active learning (i.e., choosing training examples), an optimal
solution can be obtained if the goal is to minimize the uncer-
tainty of the learner. In the current study, we will apply this
approach in a human motor learning task and test whether
behavior is well described by such a selection criterion.

Active learning

Mathematically, we can summarize active learning of a
motor task as follows. The student has to learn a task consisting
of P different components or behaviors, indicated by the
multinomial variable x between 1 and P. A task component can
be defined as a subtask in which mastery is required for the
attainment of the overall task goal. The correct or optimal
motor output is an observable but currently unknown function
of the task component, y(x). The learned behavior for each task
component can be described by a set of parameters. For
simplicity and without loss of generality, we assume here that
each task component is described by a single parameter. Thus
in our simple case, the learner has a set of parameters
W, W] representing the knowledge of the movement
required for each task component. For example, in our task, the
subject was asked to compensate for a force perturbation when
making reaching movements toward a number of different
targets. Here w'", ..., w* represent the estimated force that the
subject needs to produce for each movement direction to
counteract the force perturbation. In other words, the parame-
ters constitute the learner’s model of the task.

On trial n with component x,,, the learner produces the move-
ment §, = w(™ + g, the estimated force plus random motor
error g,, and observes the correct answer y,. A general class of
learning rules is gradient descent: The learner updates his own
knowledge by the difference between actual and desired out-
put, using the learning gain K, (Donchin et al. 2003; Huang
and Shadmehr 2007; Thoroughman and Shadmehr 2000)

Wfl"‘:”)l = wizxn) + Kn(yn - }/]\n) (])

The problem of active learning in this context is to pick the
next training example x,, such that overall performance in the
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task space can improve. In coached (i.e., passive) learning and
most motor learning experiments, this problem does not arise
because x,, is determined by the teacher or experimenter. Now
what would constitute a good criterion to choose x,,? Cohn and
colleagues (1996) suggest that a learning system should at-
tempt to reduce the expected squared error on the trial after the
learning trial n. That is, the learner should try to pick a training
example on trial n so that after he or she has learned from this
training example following Eg. I, the performance averaged
across all skill components will be maximally improved.

For an unbiased learner (a learner who does not show
systematic constant errors), the expected squared error on trial
n + 1 is equal to the uncertainty the learner has about his
learned output y. Therefore good training examples will max-
imally reduce the uncertainty on the parameters w'", ..., w®
after the learning. As we show in APPENDIX 1, this translates
into a selection rule in which the learner should pick the task
component in which the uncertainty prior to the learning trial
is highest. This task component then will maximally benefit
from learning on trial n, therefore also maximally reducing
overall uncertainty. This decision rule is optimum for a number
of different learning rules, including gradient descent with a
constant learning rate, as well as learning using a Kalman filter
(APPENDIX 1). Furthermore the decision rule also holds for a
learner who forgets from trial to trial (APPENDIX 2), as long
as the rate of forgetting is tuned to the rate of change in the
environment (Koerding et al. 2007).

In all of these situations, learning in general leads to a
reduction of uncertainty for the practiced task component.
Therefore a learner who follows such a rule would not pick the
same training example twice in a row; after practicing task
component x on trial n, a different skill component will have a
higher uncertainty. We ask here whether active learning in
people follows this prediction and whether it can be described
using an uncertainty-based decision rule.

Furthermore, we ask whether the choices during active
learning are influenced by the error experienced during the last
movement. When both the parameter and the motor noise ¢,
are assumed to have Gaussian distribution, as is the case in the
standard Kalman filter, the uncertainty of the model parameters
will always be reduced for the component of the task that was
practiced independent of the error observed. This would lead to
the counterintuitive prediction that errors during active learn-
ing would not affect action selection.

However, there are versions of the Kalman filter that would
increase the parameter uncertainty when a big error is ob-
served. One example is a system where the output noise does
not have a Gaussian distribution but is drawn from a mixture of
Gaussians of identically zero means and different variances. In
such case, the observation of a large error would lead to a
reduced rate of learning (Kording and Wolpert 2004), and an
increase in model uncertainty. Under the uncertainty-based
selection rule, this would lead to repetitions of training exam-
ples when a large error is observed. However, any versions of
such model would still predict that a learner should decrease its
uncertainty when a small error is observed. Therefore any
uncertainty-based selection model predicts that the learner is
biased to not repeat an action when an error close to zero is
observed.

To summarize, the uncertainty-based selection rule (Cohn
et al. 1996) predicts that an optimal learner should choose the
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task component with the highest uncertainty. After that choice
is made, the learner should be biased to not immediately repeat
the same action on the next trial. Here we have taken the first
steps in quantifying the factors that affect human choices in
active learning of a motor skill. Can their choices be under-
stood in the framework of uncertainty estimation? Do motor
errors affect our choice of training? In the present study, we
used a force-adaptation task in which subjects learned the task
of compensating for force perturbation when making reaching
movements. In experiment 1, we observed how human partic-
ipants select their own sequence of actions to practice and how
motor errors influence these choices. In experiment 2, we
further explored the idea that the variance of observation might
influence the subjective estimation of its reliability. We tested
the hypothesis that the consistency of observation was a con-
tributing factor to human participants’ strategies by varying the
variances of the perturbation applied to each of the four task
components.

METHODS
Hitting game

We used a hitting game to examine how the statistical properties of
the training experience influenced the subjects’ strategy in active
learning (Fig. 1, A-D). The goal of the game was to become as
proficient as possible at hitting a small target in one of four directions
with a rapid center-out strike using a robotic manipulandum (Fig. 1A4)
(Huang and Shadmehr 2007; Hwang et al. 2003). Subjects’ profi-
ciency was rewarded with points in randomly interspersed test trials.
During test trials, the computer chose the target for the subject. The
closer the hand cursor came to the target, the greater the number of
points. The score and the financial incentive depended solely on the
performance on these test trials.

There were four possible targets, arranged on an invisible circle of
a 10-cm radius. The targets were positioned at —15, 75, 165, and 255°
such that they were perpendicular to each other to minimize general-
ization of motor adaptation (Donchin et al. 2003). Hand position was
displayed at all times as a 0.5 X 0.5-cm white square cursor. At the
beginning of each trial, the robot brought the hand to the center
mark—a stationary 0.5 X 0.5-cm white square. Targets were then
displayed as red squares. After a short, variable delay, the targets
turned white and the center mark vanished—this was the “go” signal
for the center-out strike. As the movement crossed the invisible 10-cm
radius circle, a yellow dot appeared at the crossing point to emphasize
the distance between the strike and the goal as a measure of reach
error. If the movement duration was too long (>0.23 s), a blue dot
appeared instead. Beyond the invisible circle an elastic force field
acted as a “pillow” to absorb the strike. On some trials the robot
perturbed the movement with a velocity-dependent force field (see
following text), which deflected the movement in clockwise or
counter clockwise direction.

Because there were multiple targets present during active training
trials, we needed to ascertain toward which target the subject was
aiming. Therefore after each strike when the hand hit the pillow,
subjects brought their hand back to the center of their intended target.
At this point the center mark reappeared and the robot brought the
hand back to the center.

Active training, passive training, and test trials

Participants were tested on randomly interspersed test trials in which
one direction was chosen at random for them. In between test trials,
participants trained for directions of their choice (active learning) or a
direction chosen randomly for them (passive learning) in either an active
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learning or passive learning block (Fig. 1, A and B). Comparison between
the test trials in each type of blocks allowed us to assess the efficacy of
the learning strategies. Participants were instructed to pick their move-
ment directions in training trials so that they would maximize their
performance in the test trials. We awarded participants a monetary reward
dependent on the amounts of points earned in the test trials. It was made
very clear that the score only reflected their performance in the test trials
and not their performance on the training trials. This was important as we
did not want to contaminate subjects’ strategies during training with a
greedy element of selecting an easy target for monetary return.

J Neurophysiol « VOL 100 «
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Test trials were randomly interspersed between the training trials (1
of 5) and clearly announced with the word “test” on the screen
immediately before the trial started. The computer pseudorandomly
picked the target among the four available to test the participants’
performance. Performance was measured as the angular distance to
the target at the point where the cursor crossed an invisible circle of
10 cm. Four accuracy levels were established: 5.16, 4.49, 3.61, and
2.48°. For each additional accuracy level achieved, the movement was
award one additional point in that trial for up to a maximum of 4
points.
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Four of five trials were training trials. The experiments were
divided into blocks of 60 trials (experiment 1) or 160 trials (experi-
ment 2); each block was either active training or passive training. The
schedule of active and passive training blocks is shown in Fig. 1, B
(experiment 1) and C (experiment 2). In training trials of active
training blocks, all four targets were available and the subject chose
their target direction to aim. In training trials of passive training
blocks, the computer pseudorandomly picked the target among the
four available.

Experiment 1

Our objective was to determine whether errors that subjects expe-
rienced during active learning affected the subsequent choices that
they made. To that aim, we considered two kinds of errors: errors that
were due to a consistent perturbation and errors that were due to an
inconsistent perturbation. To induce errors, we applied a velocity-
dependent force (viscosity of 10 Ns/m) that pushed the hand perpen-
dicular to the hand movements toward some target directions.

The perturbations of each block of trials followed one of two
patterns (Fig. 1D). In the constant-in-null pattern, movements toward
three of the four targets were unperturbed (null or “N”), whereas
movements toward one target were perturbed with a consistent curl
force field (constant or “C”). The C target was assigned pseudoran-
domly for each block. The C target had a clockwise field for the first
30 trials of the block, and then the field switched to a counter
clockwise field. A good active learning policy would have been to find
the C target and continue to train mostly on that target.

It is possible that subjects would choose the C target because it was
the only target that had any perturbation. In the constant-in-random
pattern, again one target was picked to have a constant perturbation
(C) that switched after 30 trials. In contrast to a constant-in-null block,
however, a curl field was also presented during movements to the
three remaining targets. These curl fields switched randomly between
clockwise or counterclockwise fields (random or “R”). In these
movements, the field had a random viscosity with a uniform distri-
bution from —10 to +10 Ns/m to further mask the presence of the C
target.

Experiment 2

To further explore the idea that the variance of the perturbations—
i.e., the reliability of errors—influenced choices during active learn-
ing, we conducted a second experiment where the mean of the
perturbations associated to the various targets were identical, but their
variance differed (Fig. 1, C and D). Once again, four targets were
available. At the start of each block (now 160 trials long), each target
was assigned a curl field with a viscosity that had a mean of 10 Ns/m
but a variance that was low (R1 target, viscosity uniformly drawn
from 6 to 14 Ns/m), medium (R2 target, viscosity uniformly drawn
from 2 to 18 Ns/m), high (R3 target, viscosity uniformly drawn from
—2 to 22 Ns/m), and very high (R4 target, viscosity uniformly drawn
from —6 to 26 Ns/m). Therefore observations at the R1 target should
be the most consistent through out the block. Similar to experiment 1,
participants earned points only during the sparsely distributed test
trials in which the computer randomly tested participants’ perfor-
mance in one of the four targets. During these test trials, the viscosity
was always 10 Ns/m (C targets).

Softmax regression procedures

We modeled the probability of choosing a target using a general-
ized linear model. We used a multinomial extension of logistic
regression—softmax regression. The probability vector, p, of select-
ing target x,, (x,, = 1...P) depends on the vector v,,, which in turn was
a linear function of three factors: the 4 X 1 vector ©,;,., with the mean
constrained to zero (i.e., 3 free parameters) modeled the preference of

J Neurophysiol « VOL 100

participants for one of the four particular targets, 6,.p., modeled the
preference of each subject to repeat the last movement direction x,,,
and finally 6,,,,, modeled the increase in probability to repeat the last
movement direction, as the absolute size of the last error [y,| in-
creased. By writing the last choice x, as the vector of indicator
variables x,,, the full model can be written as

n

A\ ®bizls + Orepeatxn*] + eem)rxn*] |yn*l| (2)
exp(v,,”)
p(xn = 1|Vn) CXp(VglP))
p, = s | = softmax(v,) = —  (3)
p (xn =P Vn) r .
exp(vy)

Jj=1

We fitted the parameters Oy, Orcpear AN Oy, by maximizing the
log-likelihood of the data given our model using numerical methods

(Matlab fminsearch).

Participants

Sixteen subjects participated in experiment 1 and another 16 in
experiment 2. For experiment 1, the experiment was counter-balanced
across subjects for the order of the perturbations (constant-in-null and
constant-in-random) and training conditions (active and passive).
Subjects were healthy, right-handed, and naive to the purpose of the
experiment. Procedures and protocols were approved by the Johns
Hopkins Medicine Institutional Review Board and participants gave
their written consent prior to the experiments.

RESULTS
Errors in the last movement influence action selection

If active learners estimate the uncertainty about the desired
output and then choose to train on a component on which they
are most unsure (APPENDIX 1, Eq. A9), they should have a
tendency not to practice in the same direction as the last trial.
Contrary to this prediction of uncertainty-based models, our
participants repeated the last movement direction with a prob-
ability of 35 = 12% (Fig. 2A), significantly higher than just
choosing a direction at random [2-tail 7-test, #(15) = 3.46, P <
0.01]. When the participants decided to switch, they picked
each of the other three directions with equal probability.

The probability of repeating a direction was also strongly
modulated by the amount of error that the subject experienced
in the previous trial. In Fig. 2B, we plotted the probability of
repeating the last direction as a function of the absolute size of
the error on the last trial. We found that probability of repeat-
ing a direction was an increasing function of the error size
[1-factor ANOVA, F(9,159) = 5.51, P << 0.001]. Therefore a
larger error in trial n led to an increased likelihood of repeating
the same direction in trial n + 1. This was the case for both
blocks in which movement to the remaining targets were
unperturbed (constant-in-null pattern) or perturbed by a ran-
dom force field (constant-in-random pattern).

Participants repeated even well-learned task components

When there were little or no errors in a trial, the probability
of repeating the target approached 25%, the rate of random
selection. Under any uncertainty-based models, the observation
of a zero error should have decreased the uncertainty about the
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FIG. 2. A: probability of switching training directions from trial n to trial
n + 1. The abscissa indicates the direction and the magnitude of the switch; 0
target switch means that the target of trial n was repeated in trial n + /. White
bars indicate the average probabilities of each switch options. Error bars
indicate SE across participants. B: probability of repeating a target as a
function of the absolute size of the recently experienced error, separated by the
type of force-target patterns. - - -, the average fit using the softmax regression
model. Error bars indicate SE across participants.

corresponding task component. This would have then lowered
the learner’s probability of selecting this direction again below
the probabilities of the other directions. While our data showed
that error was a robust factor in encouraging repetition of a
previously selected direction, a trial with a small error did not
reduce the probability of re-selection of the same movement
direction below chance as the uncertainty model had sug-
gested. Participants, therefore clearly violated a fundamental
prediction of uncertainty-based active learning models. Sub-
jects completed a postexperimental questionnaire. While two
subjects reported that they were repeating large error move-
ments, cognitive responses were inconsistent across subjects.

To quantify these observations we estimated the contribution
of error and the tendency to repeat a direction even in the
absence of an error using softmax regression (a multinomial
extension of logistic regression, see METHODS). The regression
included a term to capture biases toward specific targets, a term
that determined the probability of repeating a direction in the
absence of error (0,.p.,), and a term that captured how much
the probability of repeating increased with the absolute size of
the last error (0,,,,). From the estimated parameters, we were
able to reproduce the sequence and trends of participants’
choices (dashed line, Fig. 2B). While we did not find any
significant bias toward any of the four targets [l-factor

ANOVA, F(3,60) = 1.04, P = 0.38], nearly all participants
showed a positive 6., indicating that they were more likely
to repeat an action when a large error was encountered [2-tailed
t-test, 1(1,15) = 3.6, P < 0.01]. Once we accounted for the size
of the error, 0,.,., Was not significantly different from zero,
[#(1,15) = 1.0, P = 0.32]. That is, participants chose the
well-learned movement direction just as likely as the other
directions even when no error was encountered. This clearly
violates the prediction of uncertainty-based selection models,
as any variant of this model would have predicted a bias away
from a just-practiced skill component when no error was
encountered.

Relationship between selection strategy and performance

How did the participants’ active learning strategies affect
their performance? In general the average absolute errors in
test trials were slightly, but not significantly bigger after active
learning compared with passive learning blocks [paired #-test,
1(15) = —0.238, P = 0.82]. We postulated that subjects might
have used a combination of good (e.g., error-dependent repe-
tition) and bad strategies (e.g., blind repetition). We looked at
the correlation between strategy and performance on test trials
after active learning. Because performance was determined
largely by the overall proficiency of the participants, for each
participant, we subtracted the average error during test trials
after active learning from the average error after passive
learning. The difference was then correlated with individual
parameter estimates (0,cpeq a0d Ocyyo,) from the softmax regres-
sion. A positive correlation of the parameter with the difference in
errors indicated that this strategy facilitated learning, while a
negative correlation indicated that this strategy hurt learning.

There was a positive correlation between error sensitivity
and later active test performance (1-tail Spearman’s correla-
tion, r = 0.48, P < 0.05). Participants who sought to train in
directions where their errors were big performed better in
subsequent testing (Fig. 3, 6,,,,,). Importantly, two participants
that displayed error avoidance (negative values for 6,

A CTI’OI’)
showed poorer performance relative to their own performance
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FIG. 3. Scatter plots of the values of model parameters (x axis) against the
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performance after active compared with passive learning. The tendency to
repeat a movement direction when a large error was observed (0., left)
correlated positively with performance on test trials. The tendency to repeat a
target even in the absence of an error (6 right) led to worse outcomes.
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after passive learning. Furthermore, we found a strong negative
correlation between 6,.,., and subsequent test performance
(Fig. 3). The more likely participants repeated a direction (after
the influence of the error size has been accounted for) the
worse was their test trial performance (1-tailed Spearman’s
correlation, r = —0.60, P < 0.01). Thus the violation of the
optimal active learning strategy indeed hurt the performance of
the participants in the active compared with the passive learn-
ing condition. These analyses show that the individual’s active
learning strategy influenced later performance on test trials.
Furthermore, repetition of targets in the absence of errors led,
as predicted by uncertainty-based models (Cohn et al. 1996),
indeed to poorer learning outcomes.

Variance of the error signal

One reason to re-select the last direction despite no errors may
be that one is trying to estimate the consistency of the observation.
For example, if a participant found that for one direction the
perturbation changed randomly from trial to trial, a good active
learning strategy would be to ignore this direction because train-
ing here could not lead to further improvement. Did the variance
of the perturbations affect the choices?

To test this idea, we introduced a condition— constant-in-
random—in which one direction was perturbed with a constant
force field (“C” target), whereas the other three were perturbed
with a random force field (“R” targets). To assess the influence
of consistency, we attempted to match the absolute sizes of the
errors of the movements toward all the directions. Because
participants would adapt to the constant force field, we intro-
duced a stronger field in the constant target than in the random
ones and flipped the perturbation direction after 30 trials
(Fig. 4A). As a result the errors for the constant target were
large immediately after the onset of the block and after the
switch. However, the errors in the “C” target became smaller
than the “R” targets by the end of each phase.

To account for these remaining differences in error, we
selected trials that had similar performance in C and R targets
(dotted trials in Fig. 4A; paired -test for each trial and each
participants, P > 0.15). For these trials, we found that the
probability of choosing a “C” target was not different from
choosing an “R” target [Fig. 4B, 2-tailed t-test, #(30) = —0.43,

A B

P = 0.67]. Therefore variance of perturbations did not appear
to influence choice.

While we attempted to match the absolute error size in
experiment 1, the average size of the force field was different.
Furthermore, the number of trials in a block (30) might have
been too small to allow participants to estimate variance for the
different skill components. To address these concerns and to
test for the influence of error variance explicitly, we designed
a second experiment in which the averages of the force per-
turbations were matched, and participants made substantially
longer sequences of movements (160 per block). The pertur-
bations associated with each target were drawn from a distri-
bution that had identical mean (10 Ns/m). Each target in a
block had a perturbation variance that was low, medium, high,
or very high (Figs. 1D and Fig. 5B, abscissa). We labeled the
corresponding targets R1, R2, R3, and R4 (Fig. 1C). Partici-
pants adapted to the mean force field for all four variance levels
as seen in the decrease of mean error over many trials.
However, trial-to-trial variance of errors remained high for
movements with highly variable perturbation [1-way ANOVA,
F(3,63) = 30.45, P << 0.001; Fig. 5, A and B, abscissa).

To determine whether the variance of the error influenced
the choices during active learning, we first needed to account
for the influence of the mean absolute error on choice because
it increased with perturbation variance. We therefore used the
same softmax regression approach as in experiment 1. As in
experiment 1, we found that the error size of the last trial posed
a significant influence on the target selection of next trial
[2-tailed r-test, #(15) = 2.54, P < 0.05]. Participants also
showed a slight tendency to repeat the last target even in the
absence of error [2-tail r-test, #(15) = 1.77, P = 0.09], again
violating the uncertainty-based models. Using these parame-
ters, we then predicted the probability to practice on targets of
each variance level assuming that participants did not have a
bias toward wither low- or high-variance targets (Fig. 5B). The
observed probabilities were not significantly different from
these predictions [2-factor ANOVA, F(3,93) = 0.443, P =
0.72]. For cross-validation purposes, we also used the param-
eters fitted using experiment 1 data, and again, the observed
probabilities were not significantly different [F(3,93) = 1.123,
P = 0.334)].

Const-in-Rand

Training Performance in Const-in-Rand
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FIG. 4. A: average error for the constant and random
targets as a function of trial number in active training. Graph
shows initial high errors for the constant target with subse-
n.s. quent learning. @, the trials that were picked in which the
average absolute error size were matched for constant and
random targets. The vertical bars indicate the SE across
participants. B: overall probability of visiting a constant-
force target vs. a random-force target for trials of matched
absolute error sizes (® in A).
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FIG. 5. A: average movement error separated by the variance of the per-
turbation (target R1 = smallest, R4 = highest variance). The vertical bars
indicate the SE across participants. B: overall probability of selecting a target
direction with small (R1), medium (R2), high (R3), and very high (R4)
perturbation variance. Plotted are the actual probabilities, simulated probabil-
ities using parameters obtained from logistic regression of experiment 2 and
simulated probabilities using parameters from experiment 1 for cross-valida-
tion. - - -, the predicted probability for an unbiased learner.

Finally, it is possible that participants repeated even high-
variance targets because they attempted to reduce their motor
variance strategically through an increase in stiffness for these
movement directions (Burdet et al. 2001). To test for this
possibility, we estimated the stiffness of the arm for each
movement direction and variance level. While the stiffness
varied systematically with the movement direction, reflecting
the natural anisotropy of the arm (Mussa-Ivaldi et al. 1985),
our estimates were not influenced by the variance of the target,
(F(3,58) = 1.80, P = 0.157).

In summary, the results of experiment 2 demonstrated that
participant’s choices were influenced by the absolute size of
the error of the last movement but not by the variance of these
errors, at least as measured over 160 trials.

DISCUSSION

The presented study, to our knowledge, is the first to inves-
tigate active learning strategies in human motor control. We
used a task that had multiple components (movement direc-
tions). The participants’ goal was to choose their own training
schedule so that they would become proficient in all compo-
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nents of the task. We found that the choices made by the
learners were dominated by two main factors.

First, when subjects encountered a task component that
resulted in large performance errors, they repeated that move-
ment. It is intuitively clear that this strategy should lead to
better learning as compared with random selection of task
components: big errors can indicate a mismatch between the
current estimate of the force perturbation and the correct value
and therefore indicate the need to learn. Participants who
sought out movement directions with large errors were more
successful in subsequent test trials; participants who avoided
errors were comparatively less successful.

Our second finding was that after performing a perfect
movement (i.e., no errors), participants did not avoid that task
component. Current algorithms in machine learning show the
opposite tendency: making an observation close to an action
component reduces the model uncertainty in the neighborhood
of this observation and therefore reduces the probability of
re-selecting this component in the next training trial. People
did not follow this strategy during active learning. When no
error was observed in a movement direction—a situation in
which the estimated uncertainty of the output should have been
reduced, they did not avoid this movement direction. This
behavior was suboptimal as it was correlated with poorer test
performance after active learning. Thus reducing the tendency
to repeat well-executed task components may help people
improve overall task performance.

Why do people repeat task components even when the last
error was very small? We tested the hypothesis that this might
reflect a strategy to test the consistency or variance of the task
component. Such knowledge could then be used to avoid task
components in which large errors arise from high variance of
the environment rather than from a large mismatch between
average required and average produced motor behavior. We
found that while participant’s choices were dependent on the
absolute size of the last error, they were insensitive to the cross-
trial variance of these errors. The results can imply one of two
things. First, participants may not estimate the variance of the
error signal over multiple trials. This is congruent with recent
results that showed that variance of reward values does not
influence decisions (Daw et al. 2006). Alternatively, it may
imply that participants were trying to reduce the variance of the
errors for movement directions with high trial-to-trial variance
through a strategic increase in stiffness (Burdet et al. 2001).
While this remains a possibility, our analysis suggests that they
were not successful in doing so. As a result, we concluded that
the strategy of re-selecting the target was suboptimal. Indeed
for most participants who showed this behavior performance
after active learning was slightly worse than after passive
learning in which trials were picked at random.

Thus participants repeated already learned skills rather than
explore new, untrained task components. Indeed, performance
during training trials was better during active learning than
during passive learning likely due to the larger number of
target repetitions during active learning. While this strategy led
to poorer performance in the short term, it may have increased
the motivation during the task. Recent studies indicate that
positive, motivating feedback may increase retention of
learned motor skills in the long-term (Chiviacowsky and
Wulf 2007). The optimality of the active machine-learning
algorithm only reflects the minimization of cost terms asso-
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ciated with the explicit task goal. Therefore it is possible
that repeating a task stems from its benefits over a long-term
period, a component that we did not assay in our protocol.
In addition, it is possible that as the targeted skill involve
more variables, other principles may determine the optimal
active learning strategy (Wulf and Shea 2002). Indeed there
is evidence that the sequence of learning examples affects
retention properties of the acquired skill. In a task where
participants were asked to learn three different punch styles,
people who trained with a random schedule—practice trials
on all three styles were conducted intermittently—retained
their performance better after 10 min and after 10 days,
when compared with people who trained one style at a time
(Shea and Morgan 1979). Similar results emphasizing the
benefits of concurrent and intermixed training of several subskills
as a whole were found in basketball shooting (Memmert 2006),
pistol shooting (Keller et al. 2006), surgery training (Brydges et al.
2007), and three-dimensional spatial orienting (Shebilske et al.
2006). For example, in the basketball study, it was found that
people had better acquisition when shooting positions were
blocked but better retention of the skills when shooting positions
were randomized.

These results raise the possibility that choices made
during training can have different effects on short-term
versus long-term measures of performance. Based on our
study we can only make inferences about the short-term
effects of these choices. However, because most evidence
suggest an improvement of long-term retention with inter-
mixing of training examples, we think it is likely that these
results would generalize to a longer time scale. Our results
highlight that humans do not always choose the optimal
learning strategy when given the chance to select their own
training sequence, possibly preferring immediate positive
feedback to the chance of exploring new, unlearned task
components. We showed that we can separate aspects of
learning strategy that improved overall performance from
aspects that impaired performance. Our findings imply that
it should be possible to design adaptive algorithms, i.e., an
artificial coach, that would lead to better short-term gains
than random training and, in particular, better than what the
students are likely to do on their own. Specifically, the
present results predict that an artificial coach could be
designed that produces better performance simply by in-
structing the student to repeat task components only when
the last error in that component was large. Such adaptive
training algorithms may play a useful role in sports training,
as well as robot-based rehabilitation training after stroke or
developmental disabilities.

APPENDIX 1

Let us assume a task consists of P different skill components or
behaviors (x = 1...P), and that the learner’s current skill level can be
expressed by a set of corresponding parameters w'", ..., w”. For
example, in the force adaptation task, —w®, ..., W represent the
estimated magnitude of the force perturbation and w(” w? rep-
resent the estimated magnitude that the subject should produce to
counteract the force perturbation (i.e., the internal model of the task).
On each trial, the produced output ¥, for a particular component x,,
depends on the corresponding parameter plus some motor noise p,,, a
random variable with zero-mean and variance o

Fa=wi + s, (AD)
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After an action on trial n, the system learns from the performance
error, the difference between the actual , and optimal output y,,. Thus
on each trial

Wit = Wi + KO, = 5) (A2)
After the criterion proposed by Cohn et al. (1996), the best skill
component to train on trial n is x,, the component that, after learning,
will reduce the expected squared error on trial n + 1 (the expected
value is taken over all possible components x,,, and produced

movements)
x}l ] > (A 3)

Under the assumption of an unbiased learner (i.e., a learner that
does on average not show a systematic error), the expected squared
error of the output is the uncertainty about the relevant parameter
3 plus the variance of producing the output (¢°), again averaged
across all possible skill components on trial n + 1

:;: arg mm(E |:(yn+l =39
IXn+ 1

Xy

E [ (1 = y”m)z] = E(EW + 0;) A9

The uncertainty is defined as the expected squared distance from
the unknown ideal model parameters w™"

2
ity = ] (wer =i )|

Now we have to calculate how observing the error of trial n for skill
component x,, influences the uncertainty of the model parameter on the
next trial after using the learnm% rule in Eq A2.To do so, we can use
Eq. A2 to expand the term W

(A5)

n+l)

witx}rl = W&t) + Kn(yn - )/}n)

i e,

w, =W — w9 — K w9+ Ke + Kl

) — ) (x)
WnXJr] - Wn‘ + K”<W

W —

=(1- Kn)(w‘”* - wf,””) — K", (A6)

We assume that the motor errors &, have variance o and are

independent of the parameter uncertainty. Thus we can express the

uncertainty around w¢? , after perceiving behavior x” as

(=it )]
= E[ ((1 - K»(w“* - w&”) - Ka) 2]

= (1= K + Ko

Eﬁfll =

(A7)

From this we can see that the change in uncertainty after learning
for a particular skill component x is

S -3 =

Thus for a constant learning rate 0 < K < 1, it follows directly from
Eq. A8 that the average uncertainty will be reduced most, if we pick
a behavior x,,, for which the corresponding parameter uncertainty >
is highest.

(K, — KHZY + K20? (A8)
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Thus the decision rule in Eq. A3 can be simplified as

.|

=
X ¥
Il

arg min E |:(yn+] _yAnH)z

PR
xll]

We also considered the result for adaptive learning rates. The
optimal K,,, known as the Kalman gain, is the learning rate that results
in the lowest possible uncertainty in the parameter after learning. To
obtain this learning rate, we differentiate Eq. A7 with respect to K,,.
The resulting optimal adaptive learning rate depends on the parameter
uncertainty 3®and the motor noise o~

E(X)
n z;x)+0'2

arg min E [Eiﬂﬁ‘) + o

Xnt+1

= arg max 3™

X,

(A9)

K (A10)

With such flexible learning rate the updated optimal parameter
uncertainty becomes
E(X)
n

= (- g )

S Al

The decrease in uncertainty between trial n and n + 1 therefore is
maximal when 3¢ is maximal. Therefore the optimal selection rule
(Eq. A9) remains valid. Indeed this can be shown for a number of
different choices of K,,. It should be noted that we assume that there
is negligible generalization between behaviors, that the motor noise o
is constant across all components, and that the amount of motor noise
cannot be changed by learning.

APPENDIX 2

Does the optimal active learning rule (Eq. A9) remain valid for a
system or learner that forgets with time? One might suspect the
opposite: if one forgets, it would be good to repeat immediately what
was learned before. Here we show that the derivation in APPENDIX
1 remains valid as long as we have an unbiased learner: a learner that
has a rate of forgetting that is matched to the rate of change in the
environment (Kording et al. 2007).

To set out, let us assume that the environment (v) changes following
a simple auto-regressive process of order 1 with 0 < A, < 1

& ~ N(0:0y)

An optimal Bayesian learner should then mirror the rate of change
in the environment with a forgetting factor of the same size. Thus the
learning rule (Eq. A2) becomes

vy = Ay + s (A12)

if observation on x was made
otherwise

x) ALWI(IX) + Kn(yn - )7,1);
Wytr1 = ALW(x),

(A13)

Thus in the absence of observations and —1 < A < 1, all weights
drift back toward zero.
The uncertainty would also be updated to match the uncertainty in
the environment
! A — K39 4+ 0, if x observed
() — L<=n n“n L»
2 { AN + 0, otherwise Al
As long as the learner is unbiased, i.e., A, = A, and Q, = Q,, the

expected squared error will still be as in Eg. A4. Thus the only thing
that changed from APPENDIX 1 is that we have added a constant Q

to the uncertainty and scaled the uncertainty by A” on every trial.
Neither of these manipulation changes where the minimum for the
choice in Eq. A9 lies. Thus as long as we have an unbiased learner, the
selection rule in Eq. A9 remains optimal.

What if the forgetting rate of the learner (4,) and the “true” forgetting
rate of the environment (A;,) are not the same? Then we will see a
discrepancy between A, w, and A,w,, and this difference will be bigger
the further w,, is away from zero (the prior). So if learner has a weight that
has a large absolute value, then the forgetting will make the internal
estimate systematically closer to zero than in the environment. The
optimal strategy would then to repeat these movements or observations
more to offset the faster forgetting rate with repeated training.

The argument here does not rest on the assumption that the forgetting
rate of the learner and the forgetting rate of a specific experimental
environment are matched. Rather we propose that the forgetting rate is
matched to the average forgetting rate in the environment and that under
these conditions the active learning rule (Eg. A9) is optimal.
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