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Human motor behavior is constantly adapted through the process of error-based learning. When the motor system encounters an error,
its estimate about the body and environment will change, and the next movement will be immediately modified to counteract the
underlying perturbation. Here, we show that a second mechanism, use-dependent learning, simultaneously changes movements to
become more similar to the last movement. In three experiments, participants made reaching movements toward a horizontally elon-
gated target, such that errors in the initial movement direction did not have to be corrected. Along this task-redundant dimension, we
were able to induce use-dependent learning by passively guiding movements in a direction angled by 8° from the previous direction. Ina
second study, we show that error-based and use-dependent learning can change motor behavior simultaneously in opposing directions
by physically constraining the direction of active movements. After removal of the constraint, participants briefly exhibit an error-based
aftereffect against the direction of the constraint, followed by a longer-lasting use-dependent aftereffect in the direction of the constraint.
In the third experiment, we show that these two learning mechanisms together determine the solution the motor system adopts when

learning a motor task.

Introduction

Motor behaviors such as reaching (Shadmehr and Mussa-Ivaldi,
1994; Donchin et al., 2003), eye movements (Srimal et al., 2008),
walking (Morton and Bastian, 2006), and object manipulation
(Witney et al., 2000) quickly adapt to the changing dynamics of
the body and environment. Learning in this context is generally
conceptualized as an estimation problem. For example, for
reaching movements, the motor system may estimate the force
that will act on the arm. If a perturbing force is experienced, the
estimate will be updated using the prediction error, the difference
between predicted and observed force. Crucially, during the next
movement, the motor system attempts to cancel the perturbation
by producing a force that counteracts the current estimated force.
Error-based learning is a robust and well studied phenomenon
that helps to keep motor behaviors finely calibrated in a changing
environment.

It is, however, not always equally important to resist environ-
mental changes. We show here that, when perturbations are ap-
plied along redundant dimensions of the movement (i.e., alter
the movement without hindering successful task performance), a
second learning mechanism can simultaneously lead to persistent
changes in the direction of the perturbation. We refer to this
mechanism as use-dependent learning, because it biases the next
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movement to become similar to the last movement execution.
The term use-dependent learning has been used in previous work
(Classen et al., 1998; Biitefisch et al., 2000) to refer to neural or
behavioral changes that are induced through the simple repeti-
tion of movements in the absence of systematic errors. Our usage
here is compatible with this description, although we imply a
slightly more specific meaning in terms of the underlying learn-
ing rule.

Redundancy is a fundamental feature of the human motor
system that arises from the fact that there are more degrees of
freedom available to control a movement than are strictly neces-
sary to achieve the task goal (Bernstein, 1967). For example, when
reaching to a target, multiple joint combinations can result in the
same endpoint of the hand. Perturbations to the joint configura-
tion that do not change the position of the hand do not hinder
successful task performance and therefore do not need to be fully
corrected (Todorov and Jordan, 2002). We show here that such
perturbations, but not perturbations along task-relevant dimen-
sions, induce use-dependent learning.

To study this phenomenon, we created a redundant variant of
the standard reaching task. In this task, participants held on to a
robotic device and made fast reaching movements toward a tar-
get. As opposed to the standard reaching task, in which the target
defines both the vertical and horizontal goal position, the target
in the redundant task was an elongated box, which could be hit at
any position along its horizontal extent (see Fig. 1 A). Visual feed-
back about the hand position was provided in form of a line that
moved only in the task-relevant vertical direction, but not in the
task-redundant horizontal direction.

In experiment 1, we induced use-dependent learning along
the task-redundant dimension by passively guiding movements
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in a slightly tilted direction. In experiment 2, we constrained
active movements to demonstrate that error-based and use-
dependent learning can occur simultaneously in opposing direc-
tions. Finally, experiment 3 provides an example of how the
interaction of these two learning mechanisms determines the fi-
nal solution during adaptation to a novel force field.

Materials and Methods

Apparatus and procedures. Participants were seated in front of a virtual-
environment setup with their head on a chin rest. They made 12 cm
reaching movements with their right hand while holding a robotic device
(Phantom 3.0; SensAble Technologies), which recorded the position of
the hand at 200 Hz. Movements were made in a nearly upward direction
(on a plane tilted 20° away from the face) and involved elbow and shoul-
der joints. At the starting position, the elbow angle was ~90°. A simu-
lated spring (200 N/m) restricted the movements to a plane. A stereo
display was calibrated such that a cursor (6 mm sphere) could be pre-
sented at the correct visual three-dimensional location. The apparatus
prevented participants from seeing their hands and arms at all times.

To start a trial, participant moved the cursor into a starting sphere, 6
cm to the right of the body midline at breast height. In a standard task
(experiment 3), participants were instructed to push the cursor into a 6
mm target sphere by moving their hand rapidly upward. In the redun-
dant task, the cursor was replaced with a 12 cm horizontal line, displayed
at the vertical position of the hand. This line did not move horizontally.
The task was to push thislineintoa 12 X 1 cm box, displayed 12 cm above
the start.

Experiment 1. Fourteen right-handed volunteers (two males; mean
age, 22.7 years) participated in experiment 1. Experimental and consent
procedures were approved by the ethics committee of the School of Psy-
chology at Bangor University. The first block consisted of 70 training
trials in the redundant task. Movements with a peak velocity of 50 cm/s
(the width of the acceptable window was adjusted to keep participants at
50% correct) were rewarded if movement times were <900 ms and spa-
tial accuracy was within 3 mm of the target. Each of the next eight blocks
started with 15 active movements, followed by 15 passive movements.
For the passive movements, the robot moved the hand along a straight
trajectory with a minimume-jerk profile. Participants were instructed to
offer as little resistance as possible. These trials were indicated by a green
starting sphere and no feedback about task success or failure was given.
Participants were told that the purpose of the passive movements was to
teach them a specific movement speed that they would be asked to rep-
licate during the active movement phase. Unbeknown to the partici-
pants, on each block the trajectory for passive trials was angled 8° to the
left or right, alternating between blocks, with the order counterbalanced
between participants. To account for the slightly different baseline move-
ment directions, we offset the direction of the passive movements for
each pair of blocks by the average movement angle of the last pair. In the
following 40 active movements, we then measured the influence of the
passive movements onto the movement direction.

To show that the effects observed in experiment 1 were not attribut-
able to visuomotor adaptation, we also conducted a control experiment
with eight right-handed volunteers (six males; average age, 27 years). The
study was identical with experiment 1, with the following changes. Each
block contained only 30 instead of 40 active movements after the passive
movements. To test for visuomotor adaptation, every fifth trial during
the active movements was a probe trial in which a point target was pre-
sented at the currently preferred endpoint of the participants, which was
estimated online using a running mean of the overall movement direc-
tion (z), m, , , = 0.7m, + 0.3z,. Participants were instructed to move
the hand at the required speed to the target as accurately as possible.
During the movement, they only had information about the vertical
position of their hand in form of the line cursor and received feedback of
their full hand position only after movement end. For the first four
blocks, participants performed the task with a line that indicated the
vertical hand position only as in experiment 1, for the last four blocks
with a cursor specifying both vertical and horizontal hand positions.
Finally, to avoid an easy visual reference of the target and cursor mid-
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point, we extended both target and cursor to be as wide as the screen and
moved the starting position 4 cm closer to the body midline.

Experiment 2. Seventeen right-handed participants (four males; mean
age, 23.4 years) were tested, 12 of whom had participated in experiment
1. Experiment 2 was identical with experiment 1, except that the 15 trials
of passive movements were replaced with 15 active movements that were
constrained by a force channel. Participants were not informed in ad-
vance of the channel trials. The channel was applied in a direction that
deviated by *8° from the average produced movement direction, as
measured over the last two blocks. Any deviation from this trajectory
resulted in a position-dependent force (1000 N/m) that pushed the hand
back onto the straight-line trajectory.

Experiment 3. In experiment 3, we studied the adaptation process of
reaching movements to a velocity-dependent force field in the standard
and redundant task. Ten new right-handed participants (four males;
mean age, 22.1 years) were recruited. For force field trials, the robot
produced a force proportional to the instantiations velocity of the hand,
calculated as follows:

I B I m

pushing the hand to the right during an upward movement. For coun-
terclockwise curl fields, the direction of forces was mirrored. Trials were
rewarded if participants stopped their movements within 6 mm of the
target with a movement time <650—800 ms. The time criterion was
adjusted individually to keep the success rate at 50%.

To dissociate the adaptation to a force field (error-based learning) from
changes in the planned movement direction (use-dependent learning), we
applied a force channel on randomly selected trials during adaptation. On
these channel trials, the robot generated a position-dependent force
(1000 N/m) that pushed the hand back onto a predetermined, straight
trajectory. In the standard task, this trajectory was toward the target. In
the redundant task, the channel was applied in three directions, +8.8, 0,
and —8.8° around the average movement direction (1), which was es-
timated as the running mean of the past overall movement directions (z),
m, y, = 09m, + 0.1z,.

Experiment 3 started with two practice blocks of 48 trials in the stan-
dard and the redundant task, followed by four conditions, tested in coun-
terbalanced order, as follows: (1) standard task, 12 movements without a
force field, followed by 84 movements with a clockwise force field; in 12
of the last 48 trials (randomly chosen), we applied a force channel; (2)
same as (1), but with a counterclockwise force field; (3) redundant task,
the first block was 48 trials without force field (including 12 channel
trials); this was followed by 36 force field trials for initial adaptation and
96 trials including 24 channel trials; (4) same as (3), but with a counter-
clockwise force field.

To test the hypothesis that the observed adaptation in the redundant
task was influenced by visuomotor adaptation, we performed control
experiment 2. Eight new participants performed a version of experiment
3, in which we displayed the cursor at the true hand position additionally
to the line in the redundant task.

Data analysis. The angle of the first 200 ms ( y) after movement start
(v > 3 cm/s) and the angle of the overall movement (z) were the depen-
dent variables of primary interest. These two group-averaged time series
were fitted simultaneously by applying Equations 5-8 iteratively. To
remove possible left-right asymmetries, the clockwise and counterclock-
wise conditions were mirrored and averaged, such that we could set w, =
0. For a full probabilistic model, we assumed that the initial and overall
movement directions were normally distributed around the predicted
value with variance o] and o7, respectively. The parameters @ =
{A,B,C,D, E,F,Uy,(rz} (for full model, see Results) were then estimated to
maximize the log-likelihood of the data given the parameters. In experiment
1, parameters A—D were not fit since there was no force perturbation. We
determined 95% confidence intervals of the parameters by drawing 100,000
samples from the joint posterior distribution over all parameters using
Markov chain Monte Carlo sampling (Congdon, 2006).

Force channel model. To decompose the responses in the force channel
in experiment 3, we analyzed 11 average force profiles for each partici-
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get (Fig. 1A). The robot moved the hand
on a trajectory that deviated either 8° to
the left or 8° to the right of the center,
alternating between blocks of trials. Par-
ticipants were not aware of this manipu-
lation: After the experiment, we told them
that the robot deviated their hand laterally
and asked them to guess the direction of
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Figure 1.

pant using a constrained linear model. The first two time series were
derived from the average channel response in the standard task after
clockwise and counterclockwise adaptation (see Fig. 4A). These were
decomposed into an average response (x,, caused by slight curvature of
the movement) and a component caused by the adaptation to a force
field (x,) as follows:

yi = bixy +x

Y, = bx + x,. )

The next three time series came from the redundant task without force
field adaptation and a channel tilted by +8.8, 0, or —8.8° from the recent
movement direction (see Fig. 4 B). These were modeled as a mix of the
intercept (x,) and a component (x,) attributable to the deviation of the
channel angle from the planned movement angle (w,) as follows:

ys = (=88 —wpx, + X,
Yy = (0 — w)x, + %o (3)
Ys (8.8 — w))x, + x,.

Finally, the six channel responses in the redundant task after force field
adaptation (see Fig. 4C) were modeled as a linear combination of force
field adaptation and responses attributable to deviation of the channel
from the respective planned angles (w,, w,) as follows:

Yo = bsx; + (=88 —wy)x, + X

Y, = bax + (00— w)x, + %
Vs = bix; + (8.8 — wy)x, + X
- _gg_ (4)
Yo = bix; + (=88 — wy)x, + X
Yio = bix; + (0 —w3)x, + %
Vi = bx, + (8.8 — wy)x, + X,
The regressors (xy,X;,X,) and the regression coefficients (b,,...,b,,

Wy, . .. ,w3) were unknown. To solve this dual estimation problem, we
first estimated the likely shape of the regressors x,, . . . ,X,, assuming b; =
=1 (depending on the direction of the force field) and w; = 0. We then
solved the linear equations with an ordinary-least-square approach,
yielding maximum-likelihood estimates of the seven regression coeffi-
cients under the assumption of Gaussian noise.

By comparing the size of the predicted response bx; with the force
profile during exposure to the force field (see Fig. 4 A), we normalized the
size of force field adaptation for redundant and standard tasks. The value
w; was added to the mean direction of the channel for each condition to
obtain the planned movement direction.

Results

Experiment 1: passive movements induced

use-dependent learning

In experiment 1, participants performed the redundant task. Af-
ter 15 initial active movements, the robotic device passively
guided the participants” hands for 15 movements toward the tar-

Experiment 1: passively guided movements induce a change along a task-redundant dimension through use-
dependent learning. 4, Participants moved a line indicating the vertical hand position to a goal box. The horizontal hand position
was not relevant to the task. B, Overall movement angle (direction of movement measured from beginning to end). During passive
trials (gray box), the robot moved the participants’ hand on a trajectory angled 8° rightward (red) or leftward (blue). The manip-
ulation changed the angle of the subsequent free movements. The dashed lines indicate model fit (planned movement angle, w).

the deviation on the last block. Only 5 of
14 participants could answer this question
correctly, a number not significantly differ-
ent from chance (p = 0.202). In contrast,
the subsequent active movements showed a
prolonged aftereffect (Fig. 1B). The direc-
tion of the following 40 movements was sig-
nificantly biased toward the direction of the
preceding passive movements in that block
(t13) = 4.681; p < 0.001).

We hypothesize that this effect is attributable to use-
dependent learning, a process by which the movement plan asso-
ciated with a certain task is made more similar to the last executed
movement. In this example, these changes occur in terms of the
movement direction, a task-redundant dimension attributable to
the structure of the target. Use-dependent learning can be under-
stood as a simple averaging process between the last planned
direction (w,,) and the last actual direction of movement ( y,,) as
follows:

w1 = Ew, + Fy, + (1 — E — F)w,. (5)
The last component of the update rule allows for a slow drift back
to the baseline direction (w,). When fitting this model to the
group average data, the use-dependent learning rate F was esti-
mated to be 0.011 [95% confidence interval, (0.008—0.014)]. The
estimate for the retention parameter E was 0.966 (0.953—0.978).
Although statistically less stable, the model can also be fitted to
individual data. Eleven of the 14 participants showed a positive
use-dependent learning rate F (sign test, p = 0.028), with a me-
dian of 0.013.

Before concluding that the passive movements induced
use-dependent learning, we needed to consider the alternative
hypothesis that the aftereffect was caused by a change in the visual-
proprioceptive or visuomotor calibration (Sober and Sabes,
2003), possibly induced by an implicit error signal between the
felt hand position and the assumed visual position of the hand
(i.e., the middle of the line). In control experiment 1, we tested
this hypothesis in two ways. First, we replicated experiment 1, but
inserted probe trials, in which participants were instructed to
move their unseen hand to a specific location in the target zone,
indicated by a 6 mm target sphere. If passive movements changed
the visuomotor calibration, we should find systematic errors in
the direction of the passive movements. Contrary to this hypoth-
esis, no such difference was found (¢;, = —0.619; p = 0.55) (see
supplemental Fig. 1B, available at www.jneurosci.org as supple-
mental material). Second, we again replicated experiment 1 but
this time removed any systematic discrepancy between proprio-
ceptive and visual estimated hand position by continually dis-
playing a cursor at the veridical hand position. Participants now
consciously perceived during passive movements that their hand
was deviated to the side but still showed a significant aftereffect
(t;y = —3.096; p = 0.017) (see supplemental Fig. 1 A, available at
www.jneurosci.org as supplemental material). These data clearly
demonstrate that the change in preferred direction of movement
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Figure 2.  Experiment 2 shows simultaneous action of use-dependent and error-based
learning. A, After a pretest of 15 movements, a tilted trajectory (£8°) was imposed using a
force channel (gray box). B, The lateral force exerted against the channel (measured at 200 ms
after movement start) increases during the channel trials, indicating force field adaptation (v).
€, The initial angle of the subsequent free movements (measured at 200 ms) shows a error-
based aftereffect against the direction of the channel, which washes out quickly. D, The overall
movement angle shows a persistent aftereffect of use-dependent learning after washout of the
force field effect. The dashed black lines indicate model fit.

in the redundant task was not attributable to a change in visuo-
motor calibration.

Experiment 2: use-dependent and error-based learning can
act simultaneously

The second experiment demonstrates that use-dependent and
error-based learning can act simultaneously and independently
in opposing directions. In this experiment, participants moved
actively during the induction phase. To constrain the movements
to a certain direction, we applied a force channel to the hand: The
robotic device simulated a stiff spring along a predetermined
straight path that was rotated 8° to the left or right from the
current movement direction (Fig. 2A). On the first channel trial,
participants pushed against the robotic arm with an average force
of 0.6 N (measured at 200 ms) because the hand deviated from
the planned movement trajectory. The force increased to 0.72 N
on the next trial (¢,5) = 2.267; p = 0.038) and reached a level of
0.84 on the 15th trial (Fig. 2B). After the force channel was re-
moved, participants showed an error-based aftereffect: their ini-
tial movement directions deviated in the direction opposite to the
channel they had experienced (t,¢) = 2.95; p = 0.009) (Fig. 2C).
The error-based aftereffect quickly dissipated over four to five
movements. Surprisingly, the initial and overall movement direc-
tion then continued to change into the opposite pattern (Fig.
2D). For the remainder of the block in the overall movement
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direction deviated in the direction of the experienced channel
(tng) = —2.453; p = 0.026).

These effects can be understood as arising from the parallel
activity of error-based and use-dependent learning. According to
well established models of error-based learning (Thoroughman
and Shadmehr, 2000; Donchin et al., 2003), participants have an
estimate of force that will act on their hand during the movement
(v,,). When experiencing the unexpected force ( f,) that deviated
their hand during the channel movement, the estimate will be
updated based on the prediction error, the different between felt
and expected force as follows:

Vn+1 = Avn—'—B(fn_Vn)) (6)

where the learning parameter B and the retention parameter A
dictate the speed of the learning and forgetting process. The in-
crease in estimated force could be observed directly, because par-
ticipants attempted to counteract the channel force more and
more over the 15 movements (Fig. 2B). After removal of the
channel ( f,, = 0), this compensation led to a deviation of the initial
movement direction ( y,,) in a direction opposite to the channel as
follows:

Yn = D(fn_vr1)+wn~ (7)

The parameter D relates inversely to the stiffness of the arm. The
initial error in the movement ( y,, — w,,) was then partially cor-
rected to produce the overall movement direction (z,,). This ex-
plains why the force field aftereffect was most pronounced in the
initial movement direction as follows:

z, = ¥y, + Cly, —w,). (8)

The novel aspect of our model is the addition of use-dependent
learning (Eq. 5), which, simultaneously with error-based learn-
ing, changed the planned movement during the channel move-
ments in the direction of the channel (w) (Fig. 2D). Because
retention of error-based learning is poorer than for use-
dependent learning, the error-based aftereffect washed out rather
quickly, revealing a use-dependent aftereffect in the opposite di-
rection. Consistent with this idea, the simultaneous fit of Equa-
tions 5-8 could capture well all observed effect (Fig. 2, dashed
line). The estimates for the learning and retention parameters for
group average data indicated a faster process for error-based, B =
0.10 (0.07-0.14), A = 0.83 (0.74—0.87), than for use-dependent
learning, F = 0.038 (0.012—0.087), and E = 0.91 (0.87-0.97). We
confirmed this result by applying the model to individual data,
yielding positive use-dependent learning rates for 16 of 17 partic-
ipants (p < 0.001; median, 0.059), and positive error-based
learning rates for 15 of 17 participants (p < 0.001; median,
0.091).

Finally, we asked whether the strength of error-based and use-
dependent learning was correlated across participants. Consis-
tent with the notion that these processes are independent, the
force produced during the last five movements in the channel—a
measure of error-based learning— correlated with the force field
aftereffect (trials 31-34) (r = 0.589; p = 0.013), but not with the
use-dependent aftereffect (trial 38—70) (r = —0.078; p = 0.765).
Thus, together these results provide strong evidence for the par-
allel and independent action of these two learning mechanisms.

Experiment 3: adaptation solution is shaped by both
use-dependent and error-based learning

In the third experiment, we demonstrate that parallel action of
use-dependent and error-based learning determines the final so-
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Figure3. Experiment 3. Shown are force field adaptation in the standard reaching task (4) and redundant reaching task (B). Initially, the clockwise (blue) and counterclockwise (red) force field
caused large errors in the trajectory thatis fully corrected in the standard (C), but notin the redundant task (D). After adaptation, movementsin the standard task are nearly straight (E), whereas they
deviate into the direction of the force field in the redundant task (F). G, H, Time evolution of adaptation and fit of the use-dependent learning model. The initial movement angle ( ) and fit (7) are
shown in blue. In both tasks, there is an equivalent increase in the expected force (v, black dashed line; here scaled by D). Only in the redundant task there is there a concurrent change in the planned

direction (w, red dashed line), leading to a shift of both the initial (blue) and overall (red) movement angle.

lution during adaptation to a viscous force field (Shadmehr and
Mussa-Ivaldi, 1994). During a standard (Fig. 3A) or redundant
(Fig. 3B) reaching task, the robot repeatedly applied a clockwise
or counterclockwise force, perpendicular and proportional to
hand velocity. In contrast to the force channel used in experiment
2, the force field dependent on the velocity rather than on the
position of the hand, thereby inducing large deviation of the
initial direction of the movement. Participants corrected this ini-
tial error fully in the standard task [Fig. 3C, C = 1.07 (1.0-1.11)],
but significantly less in the redundant task [Fig. 3D, C = 0.75
(0.68—0.80)], a difference that is predicted qualitatively by opti-
mal control theory (Todorov and Jordan, 2002; Diedrichsen,
2007).

Given this difference in online correction, how would the sys-
tem adapt to prolonged application of a force field? After adap-
tation in the standard reaching task, the hand moved again in a
straight-ahead direction (Fig. 3E, —6.3 and 1.95°). In the redundant
task, however, the initial movement direction was shifted toward the
direction of the force field (—12.9 and 17.7°) (Fig. 3F).

We considered two possible explanations for this effect. First,
participants may have simply adapted less to the force field in the
redundant task, because lateral deviations here were task irrele-
vant. Our model of use-dependent and error-based learning of-
fers a different explanation. The model (Eqs. 5-8) predicts that
the degree of force field adaptation would be identical across
standard and redundant tasks because error-based learning is
driven only by the difference between expected and experienced
forces, but not by the relevance of the error for the task (Eq. 6).
Simultaneously, use-dependent learning (Eq. 5) would shift the
planned movement in the direction of the force field. As outlined

in Introduction, we hypothesize that use-dependent learning
only occurs for perturbations along task-redundant dimensions.
Therefore, the planned movement direction should only change
in the redundant task, but not in the standard task, in which the
perturbation interfered with successful task performance.

Thus, the model predicts equivalent force field adaptation in
standard and redundant task, combined with a shift of the
planned movement direction (not just endpoint) in the direction
of the force field in the redundant task. To test these predictions,
we applied a force channel on randomly selected trials before and
after adaptation. We exploited the fact the force profiles pro-
duced against the wall of the channel had a different temporal
shape when participants previously had adapted to a velocity-
dependent force field, compared with when they had changed
their planned movement direction. To demonstrate this fact, we
first measured the response in channel trials in the standard task
after force field adaptation. Here, participants counteracted the
expected force by pressing against the wall of the channel,
matching size and velocity dependence of the force field (Fig.
4A) (Scheidt et al., 2000; Wagner and Smith, 2008). We com-
pared this response with the response induced by shifts in
planned direction. We applied force channels in the redundant
task before force field adaptation in three directions around the
mean direction of movement. Now, participants pressed against
the channel toward the desired endpoint, even after the move-
ment had stopped and the task goal had been reached (Fig. 4 B).

Finally, we applied channels in three different directions
around the average direction of in the redundant task after force
field adaptation (Fig. 4C). Because of their different temporal
shapes, we now could decompose these channel responses into a
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component attributable to force field
adaptation and a component caused by 12
shifts in the planned movement direction.

The observed force profiles were modeled

using a constrained linear model (see Ma-

terials and Methods). The fits (Fig. 4A-C,

dashed lines) explained 94.7% (SD =

2.1%) of the variance for each individual 0
subject’s force profiles.

Parameter estimates confirmed that B
the extent of force field adaptation (Fig. 12
4D) was statistically equivalent between
the redundant (74.5%) and the standard
task (76.8%) (t.o, = 0.34; p = 0.742). The
analysis also revealed that the planned
movement direction changed significantly
in the direction of the force field in the g
redundant task (Fig. 4 E). A counterclock-
wise force field induced a —9.7° change C
(toy = 4.51; p = 0.001), whereas a clock- &
wise force field induced a +11.9° change
(toy = 3.82; p = 0.004). These findings
provide strong evidence against the hy-
pothesis that force field adaptation is re-
duced in the redundant task. Rather, our
analysis clearly shows that the adaptation
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solution between standard and redundant 5 0
task are only different, because the planned
movement direction shifted into the direc-
tion of the force field during the process of
adaptation, a behavior only predicted by
use-dependent learning.

The final adaptation solution is deter-
mined by the relative speeds of these two
processes. When fit to the group average
data for both the standard (Fig. 3G) and
redundant task (Fig. 3H), the learning pa-
rameters were estimated tobe A = 0.95, B =
0.17, E = 0.83,and F = 0.11. This again was
confirmed using model fits to individual
data with a median use-dependent learning
rate of F = 0.11, and the data from only one participant resulting in
a negative estimate (sign test, p = 0.011). The two-process model
also predicts that this solution will be stable. While w drifts back
slowly toward the old preferred solution (w,), the less-than-full ad-
aptation (v < f) and lack of corrections cause the movements to
systematically deviate from the planned direction (y = w + §).
Therefore, the solution w — w, = F/(1 — E — F)J will be stable.

Finally, we considered two alternative explanations for the
observed effect. First, the solution for the redundant task may
have been chosen, because it constitutes the optimal solution
under the task requirements (Izawa et al., 2008). Although we
cannot exclude the possibility that successful task performance
can partly account for the high use-dependent learning rate
found in experiment 3 compared with experiments 1 and 2 (see
Discussion), we believe that it is unlikely that an optimization
process alone can account for the observed adaptation solution.
Energetically, the solution chosen in the redundant task was
clearly more effortful than the solution chosen in the standard
task. To achieve the same movement time, participants had to
move faster (59.4 vs 52.8 cm/s; to, = 4.78; p < 0.001), and—
because the force field was velocity dependent and the force field
adaptation identical between tasks—had to counteract a stronger

Figure 4.

0 200 400 600
Time (ms)

Estimating amount of force field adaptation and shift in planned direction in experiment 3. A, After adaptation to a
clockwise (blue) or counterclockwise (red) force field in the standard task, a channel was applied in the target direction (black
dashed line). Participants produced anticipatory forces against the wall of the channel (solid red and blue line), similar to the force
field experienced on nonchannel trials (gray line). Model fits (see Materials and Methods) are shown in dashed lines in all panels.
B, Before adaptation in the redundant task, a channel was applied in three directions (light, —8.8°; medium, 0°; dark, —8.8°)
around the average movement direction. Even after the end of the movement (¢t > 400 ms), participants pressed against the
channel, providing a measure of their planned movement direction. C, After force field adaptation in the redundant task, a channel
was applied in three different directions around the respective average direction. Resultant force profiles were modeled as a
mixture of force field adaptation and deviations of planned direction (dashed lines). D, E, Parameter estimates indicate equivalent
force field learning in standard and redundant tasks (D), and a shift of the planned direction in the direction of the force field in the
redundant task (E). Error bars indicate SEM.

force field. Based on an analysis of inverse dynamics (see supple-
mental material, available at www.jneurosci.org), adapted move-
ments for the redundant task entailed a 22% higher control cost
than for the standard task. Furthermore, there were no significant
differences in the accuracy in the vertical dimension for standard
and redundant reaching task (¢, = 0.44; p = 0.67). Although it is
still possible that lateral movements were beneficial for accuracy
considering the higher movement speeds in the redundant task,
an optimization approach would need to explain why partici-
pants drifted back toward straight-ahead movements in experi-
ments 1 and 2, rather than continuing with the supposedly better
lateral movements.

Second, we reconsidered the hypothesis that the shifts in the
redundant task were not caused by use-dependent learning, but
by changes in the alignment between vision and proprioception,
as had been previously hypothesized (Scheidt et al., 2005). In
control experiment 2 (n = 8), we replicated experiment 3, while
continually displaying a cursor at the veridical hand position.
Although we thereby prevented any conflict between the seen and
felt hand position, results were comparable with experiment 3
(see supplemental Figs. 2, 3, available at www.jneurosci.org as
supplemental material).



Diedrichsen et al.  Use-Dependent and Error-Based Learning

Discussion

In sum, our experiments reveal the existence of two fundamen-
tally different learning mechanisms in response to a perturbation.
First, the motor system estimates and counteracts the perturba-
tion through a mechanism that is driven by prediction errors
(Thoroughman and Shadmehr, 2000; Donchin et al., 2003). Sec-
ond, we now show that at the same time the nervous system
associates the current goal with the last executed movement, a
form of Hebbian learning. In contrast to error-based learning,
which attempts to cancel a perturbation, use-dependent learning
changes movements in the direction of a perturbation. This
process can be shown when movements are passively guided to
one side (experiment 1), or when active movements are sys-
tematically perturbed to one side (experiments 2, 3). Although
use-dependent learning has been previously proposed as a mech-
anism that underlies the acquisition of motor behaviors through
simple repetition (Classen et al., 1998), we show for the first time
that error-based and use-dependent learning simultaneously
contribute to the learning of the same motor behavior.

Error-based learning appears to be insensitive to task goals.
We show in experiment 3 that the amount of force field adapta-
tion was equivalent in the standard task, in which the perturba-
tion hindered task performance, and in the redundant task, in
which the perturbation did not have to be corrected fully. Con-
gruent with the notion of task insensitivity, it has been shown that
participants even show adaptation if it hurts goal achievement
(Mazzoni and Krakauer, 2006).

In contrast to error-based learning, use-dependent learning
appears to be task sensitive. In the standard task, in which the
perturbation obstructed the achievement of the goal, no use-
dependent learning was observed. Only by applying perturbation
along a task-redundant dimension (i.e., the lateral position of the
hand), were we able to show its existence. How might such a task
sensitivity arise?

One possibility is that use-dependent learning is modulated
by reward signals. Standard reinforcement learning, however,
cannot easily account for the observed effects. Most learning rules
change the motor commands along a gradient estimated using
the temporal difference error (Sutton and Barto, 1998), the dif-
ference between received and expected reward (r,, — Er). Because
the temporal difference error will be on average zero, this learn-
ing rule would only change the behavior, if the laterally perturbed
movements were more rewarding than the original straight
movement. We do not believe that this is the case, because the
participants, left to their own devices, drifted back toward the
obviously preferable straight movements.

However, reinforcement learning can also be achieved by
making the learning rate for use-dependent learning F propor-
tional to the normalized reward obtained from the last move-
mentr,/(r, + Er). Following this rule, the next movement will be
biased toward the last movement execution, even if the reward
for the last movement was identical with the expected reward.
Thus, if the sampling of new experiences is biased in a certain
direction, the learned behavior will shift into that direction, a
behavior clearly demonstrated in our experiments.

Although both learning mechanism will converge on the best
solution, the updated motor plan for reward-weighted averaging
will always lie between the last plan and the last executed move-
ment. In contrast, a rule that weights recent experience by the
temporal difference error, attempts to extrapolate outside of the
recent experience: one-half of the time it will move in the oppo-
site direction as the last movement. This difference may make
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reward-weighted use-dependent learning more stable for nonlin-
ear and high-dimensional problems (Peters and Schaal, 2007;
Hoffmann et al., 2008).

It should be noted, however, that the hypothesized reward
modulation could not simply be based on the overall movement
outcome (i.e., the number of points received). Both in the stan-
dard and the redundant task, early movements in the force field
were rewarded in 33 versus 48% of the trials, and this difference is
insufficient to explain the big difference in use-dependent learn-
ing rate. Instead, the motor system may determine the contribu-
tion of each movement component (initial movement direction,
online correction) to the overall reward and base subsequent
learning on these signals. In the standard task, the task success
could be fully attributed to the online correction, and no use-
dependent learning of the initial movement direction would oc-
cur. In the redundant task, the initial movement direction could
be credited with some of the movement success (as part of the
correction was task irrelevant), allowing use-dependent learning
to occur. Although this may provide a plausible explanation,
much more work is needed to address the factors that determine
the strength of use-dependent learning and its connection to re-
inforcement learning.

Overall, however, use-dependent learning provides a novel
account of a number of perplexing phenomena in the motor
learning literature. For example, the curvature of a movement,
induced by the presence of an obstacle, influences the curvature
of the next movement, even when the obstacle has been removed
(Jax and Rosenbaum, 2007). Similarly, when learning to move
along a curved force channel, participants exhibit force field ad-
aptation against the channel, as well as changes in the planned
curvature of the movement (Chib et al., 2006). Finally, use-
dependent learning can explain why the motor system arrives at
seemingly nonoptimal solutions when adapting to novel dynam-
ics in redundant tasks, as observed in experiment 3 (Scheidt et al.,
2005; Diedrichsen, 2007).

Although use-dependent learning can be revealed in experi-
mental tasks with redundancy, it is reasonable to assume that
human motor learning always involves both use- and error-based
learning. For example, during visuomotor rotation task, error-based
learning will produce fast, trial-by-trial adaptation, independent of
task goals (Mazzoni and Krakauer, 2006) or movement corrections
(Tseng et al., 2007). Once the movement direction changes, use-
dependent learning will associate the changed motor plan with the
goal, leading to additional consolidation.

Although error-based learning depends on the integrity of the
cerebellum (Martin et al., 1996; Diedrichsen et al., 2005; Smith
and Shadmehr, 2005), we hypothesize that use-dependent learn-
ing may only depend on local changes in cortical motor areas
such as primary motor cortex (Classen et al., 1998; Biitefisch et
al., 2000). Our current results provide the requisite behavioral
tools to investigate such neural dissociations. Moreover, given
that perturbations along task-redundant dimensions can bring
aboutlong-lasting changes of motor behavior, it may constitute a
promising technique for the robotic-assisted physical rehabilita-
tion of stroke patients (Huang and Krakauer, 2009).
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