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Motor Sequence Learning Involves Better Prediction of the
Next Action and Optimization of Movement Trajectories
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Learning new sequential movements is a fundamental skill for many animals. Motor sequence learning may arise from three distinct
processes: (1) improved execution of individual movements independent of their sequential context; (2) enhanced anticipation of
“what” movement should be executed next, enabling faster initiation; and (3) the development of motoric sequence-specific repre-
sentations that encode “how” movements should be optimally performed within a sequence. However, many existing paradigms
conflate the “what” and “how” components of learning, as participants often acquire both the sequence content (what to do) and
its execution (how to do it). This overlap obscures the distinct contributions of each mechanism to motor sequence learning.
In this study, we disentangled these mechanisms in a continuous reaching task by varying how many upcoming targets were visible.
When participants (n = 14, 8F) could only see one future target, improvements were mostly due to them learning which target would
come next. When they could see four future targets, participants immediately demonstrated faster movement times and increased
movement smoothness, surpassing late-stage performance in the one-target condition. Crucially, even with full visibility of future
targets, participants showed further sequence-specific learning driven by a continuous optimization of movement trajectories.
Follow-up experiments (n = 42, 21F) revealed that the learned sequence representations did not generalize in extrinsic coordinates
across limbs and encoded contextual information of four movements or longer. Our paradigm dissociates between the “what” and
“how” components of motor sequence learning and provides evidence for the development of motoric sequence representations that
guide optimal movement execution.
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Sequence learning is a fundamental aspect of animal behavior and has traditionally served as a model for motor skill acqui-
sition. In most sequence learning paradigms, improvements are primarily driven by (explicit or implicit) learning of “what”
the sequence items are, rather than “how” to perform the sequence. Here, we disentangle what and how components of
sequence learning in one experimental paradigm. We confirm that when what component is unknown, most learning is learn-
ing what to do. However, when the sequence items are known from the beginning, practice still leads to improvements that are
generalizable to other sequences. These findings integrate a broad body of sequence learning studies and suggest a distinct
neural basis for acquiring skilled sequential movements.
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Significance Statement

this ability. The behavioral markers of sequence learning are
clear: with practice, motor sequences are performed more accu-
rately, quickly, smoothly, (Berlot et al., 2020; Karni et al., 1998;
Moisello et al., 2009) and with less cognitive effort (Keele et al.,
2003; Pashler, 1994; Reber and Squire, 1994). The learning mech-
anisms that underlie these improvements, however, remain elu-

Introduction

Many animals can expand their motor repertoire by learning new
movement sequences—with songbirds (Fee and Scharft, 2010)
and pianists (Engel et al., 1997) being exceptional examples of
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sive (Diedrichsen and Kornysheva, 2015; Krakauer et al., 2019;
Warren et al., 2011; Wong and Krakauer, 2019).

Multiple mechanisms can contribute to improvements in motor
sequence tasks. First, practice can refine individual movements,
independent of their sequential context. Second, sequence learning
can reflect getting better at knowing what to do next (Perruchet and
Amorim, 1992)—for example, by learning to anticipate the location
of the next target in a sequential reaching task or which key to press
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in a finger sequencing task. Finally, sequence learning may reflect
the acquisition of a motoric sequence representation, which spe-
cifies how to execute a specific sequence skillfully (Karni et al,
1998, 1995; Picard et al., 2013).

One paradigm that has been extensively used to study motor
sequence learning is the Serial Reaction Time Task (SRTT;
Nissen and Bullemer, 1987). The SRTT involves responding to
visual stimuli that are presented one by one on a screen.
Unbeknownst to the participants, these stimuli can follow a
specific sequence, and after many repetitions of that sequence, par-
ticipant reaction time decreases. Based on the observation that
learning in the SRTT can occur outside of conscious awareness,
improvement has been attributed to the formation of a procedural
memory (Nissen et al., 1989; Nissen and Bullemer, 1987; Reber and
Squire, 1998; Willingham et al., 1989). However it has been argued
that most sequence-specific learning in this task arises because par-
ticipants get better at anticipating what to do next (Willingham,
1999; Willingham et al., 2000). In fact, Wong et al., (2015) show
that when the SRTT is designed such that participants can fully
predict the next stimulus, practicing the sequence does not lead
to any sequence-specific improvements.

This observation raises the question whether improvements
in other motor sequence learning tasks can be simply explained
by better anticipation. In many motor sequence paradigms, par-
ticipants have at least partial knowledge of the upcoming move-
ment elements—either because they are explicitly taught the
sequence or because the sequence items are presented visually
in the form of digits on a screen (Berlot et al, 2020; Karni
et al., 1995; Verwey, 2003; Verwey and Wright, 2004; Yokoi
et al., 2017). Do participants in this case only improve how
quickly they can decide what key to press, or do they optimize
how to execute a sequence motorically?

Here we address this question with a sequence paradigm in
which participants reach continuously to visually presented tar-
gets. Participants either see only the next target on the screen
(Horizon 1, effectively a version of the SRTT) or they see the
next four targets (Horizon 4). In the context of this task, learning
the what component refers to anticipating the specific locations
of the upcoming targets. Notably, the Horizon 4 condition makes
the what information fully available from the very first trial, and
learning is more likely about how to execute the sequence. We
show that most of the learning in the Horizon 1 condition is
merely learning to anticipate the location of the next target.
However, even with foreknowledge of future reach targets in
the Horizon 4 condition, participants improve their performance
through learning. In two follow-up experiments, we further
demonstrate that this sequence-specific representation does not
transfer to another effector for the same sequence of spatial target
locations and that it generalizes to other sequences that had ele-
ments of four or more reaches in common with the originally
learned sequence.

Materials and Methods

Participants. Our study consisted of three experiments. For
Experiment 1, we recruited 14 participants (8 female) with an average
age of 22.4 +5.4 years (Fig. 1). All were right-handed, with an average
handedness score of 68 +24, assessed using the Edinburgh Handedness
Inventory (Oldfield, 1971). For Experiment 2 (Fig. 2), we recruited an
additional 14 participants (7 female) with an average age of 24.3+
3.4 years and an average handedness score of 72 +22. For Experiment
3 (Figs. 3, 4), we recruited 28 participants (14 female), with an average
age of 22.9+ 4.1 years and an average handedness score of 69 +30. All
participants reported no history of musculoskeletal, neurological, or
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psychiatric disorders. Data collection for each experiment took place
within a single session. At the start of each session, participants provided
informed consent and completed the Edinburgh Handedness Inventory.
Participants were compensated for their time (CA$15 per hour). All pro-
cedures were approved by the Health Sciences Research Ethics Board at
the University of Western Ontario.

Apparatus. Participants performed all trials in the KINARM exoskel-
eton robot (Scott, 1999). Participants rested their right arm (or both arms
in bimanual experiments) in the robot while being seated in a height-
adjustable chair. The robot supported the weight of the arm, allowing
free movement of the hand in the horizontal plane. Reach targets were dis-
played in the plane of the task via a virtual display, which blocked the par-
ticipants’ direct view of their arms. The veridical position of their fingertip
was displayed on the display as a circular cursor (0.5 cm diameter; Fig. 1A).
Hand kinematics were recorded at a sampling rate of 1000 Hz.

General procedures. In all three experiments, participants moved the
circular cursor to 14 circular targets (1 cm diameter) to complete each trial.
The reach targets were randomly placed within a 10x 10 cm workspace,
following two rules: (1) the distance between consecutive target centers
was set between 4.8 and 5 cm, ensuring consistent reach distances; (2)
the minimum distance between any four consecutive targets was at least
3 cm to prevent overlap when multiple targets were displayed. Using these
criteria, a unique set of sequences was generated for each participant. At the
beginning of each trial, the first target appeared as a home position, and
participants moved the cursor into this target and waited for a go cue.
After 300 ms, depending on the Horizon condition, either 1 (Horizon 1)
or 4 (Horizon 4) upcoming targets were displayed. In a previous work
(Kashefi et al., 2024) using a similar reaching task, we showed that partic-
ipants’ capacity for future planning is limited to two future targets.
Therefore, we chose Horizon of four future targets to ensure that the visual
information of future targets on the screen exceeds participants’ capacity
for planning future reaches. Target order was indicated by brightness,
with the first target as the brightest. Following an additional delay of
300-500 ms, the disappearance of the home target served as the go cue,
prompting participants to reach the brightest target as quickly and accu-
rately as possible. For each target, participants were required to “capture”
it by dwelling inside it for at least 50 ms. Once captured, the target disap-
peared, the remaining targets’ brightness updated, and a new target
appeared with the lowest brightness. This process repeated until all 14 tar-
gets in the sequence were completed (Fig. 1B; Movies 1, 2). Trials were
interrupted with an error message under three conditions: (1) if the partic-
ipant left the home target before the go cue, (2) if they exited a target before
the 50 ms dwell time, or (3) if their reach time exceeded 500 ms for any of
the 14 targets. Interrupted trials were repeated later in the block. The num-
ber of interrupted trials was <5% in all participants across all the
experiments.

Procedures for Experiment 1. We evaluated participants’ learning
with and without advanced knowledge of future targets (Horizon

Movie 1. An example Horizon 1 trial. Participants performed a sequential reaching task by
moving a cursor to a series of 14 targets, with each new target appearing as soon as the
current one was successfully reached. [View online]
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Movie 2.  An example Horizon 4 trial. Similar to Movie 1, but with four upcoming targets
displayed on the screen. [View online]

conditions). Each participant completed two blocks: one in Horizon 1
and the other in Horizon 4. For each block, we generated 46 unique
sequences based on the rules described in the general procedures, then
randomly designated one sequence as the “learning sequence.” This
specific sequence was repeated 180 times to assess sequence-specific
learning, while the remaining 45 sequences were each presented once
to assess sequence-general learning. The trial order was randomized
within each block. After a 5 min break, participants performed the sec-
ond block, which contained the same number of trials but under the
alternate Horizon condition. The order of Horizon conditions was coun-
terbalanced across participants (Fig. 1C).

Procedures for Experiment 2. We tested whether sequence learning
with Horizon 4 transfers across effectors. Participants completed a learning
block and a probe block. For the learning block, we generated 31 unique
sequences for each hand. One sequence was randomly designated to be
repeated 60 times to assess sequence-specific learning, while the remaining
30 sequences were each presented once to assess general learning, resulting
in a total of 90 trials per hand. Sequence type (learned or random) and
hand (left or right) were randomized within the block (Fig. 24, Learning
Block). This design also ensured that both hands were trained in the gene-
ral task procedure before the probe block. Each hand had its own cursor—a
red cursor for the right hand and a blue cursor for the left hand—which
accurately represented the participant’s index finger position. Only one
cursor was activated per trial, instructing participants which hand to use.
After a 5 min break, participants moved on to the probe block to assess
learning transfer. In this block, each hand completed three types of trials:
20 trials with new random sequences, 20 trials with the sequence learned by
the same hand in the learning block, and critically, 30 trials with the
sequence learned by the opposite hand in the learning block. Trial order,
including hand and sequence type, was randomized within the probe block
(Fig. 24, Probe Block).

Procedures for Experiment 3. We assessed generalization to random
sequences that contained parts of a trained sequence. We generated 41
unique sequences and randomly selected one to be repeated for 160 trials
to evaluate sequence-specific learning, with the remaining 40 sequences
presented only once (Fig. 3A). All sequences were presented in the
Horizon 4 condition. After a 5 min break, we tested generalization by
introducing a set of modified sequences that shared 1 to 5 consecutive
targets with the learned sequence (Fig. 3B). Apart from these embedded
segments, the rest of each sequence was designed to resemble a random
sequence. The embedded targets were randomly selected from the orig-
inal sequence and placed in random locations within the new sequences,
ensuring no bias from specific positions in the original sequence. Once
the embedded targets were chosen, random targets were added before
and after the embedded segment, following the rules explained in general
procedures. Additionally, to prevent unintentional similarities with the
originally learned sequence, we enforced an extra rule: the targets imme-
diately before and after the embedded segment had to be at least 3 cm
away from the corresponding targets in the original sequence.
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Following these rules, we created 30 trials for each embedding condition
(1-5 embedded targets). The block also included 30 trials of the original
learned sequence and 40 trials of entirely new random sequences
(Fig. 3A).

Time, smoothness, and trajectory change analysis. We used inter-
target interval (ITI) as a measure of participants’ movement time. ITI
was defined as the time taken for participants to move the cursor from
the boundary of one target to the next. For the first reach, since partici-
pants started from the center of the home target, ITI was calculated from
the onset of the go cue to the moment they reached the boundary of the
first target. We averaged 14 ITIs for 14 reaches in a trial to obtain a single
movement time measure for each trial. In all experiments, we assessed
learning by comparing the average ITIs for sequences that were repeated
only once (random sequences) with those for one specific sequence
repeated multiple times (learned sequence). This comparison allowed
us to distinguish improvements specific to practicing a specific sequence
(sequence-specific learning) from general improvements due to factors
like increased familiarity with the apparatus or overall improvement in
sequence execution (sequence-general learning).

We measured participants’ movement smoothness using Log
Dimensionless Jerk (LDJ; Balasubramanian et al., 2015). LDJ was chosen
over simpler metrics, such as the sum of squared jerk, because it offers
greater robustness when comparing movements with varying durations
or peak speeds (Balasubramanian et al., 2012; Hogan and Sternad, 2009).
We first divided each trial into 14 consecutive reaches, defined according
to our ITI criteria, as movements from one target boundary to the next.
We calculated LD]J separately for each reach and then averaged these val-
ues to obtain a single smoothness measure per trial.

To plot the average trajectories of the representative participant dur-
ing the learning process (Figs. 1E, 2C), we first segmented each trial into
14 consecutive reaches. We then divided the trials within the learning
block into three segments (early, mid, and late) to capture different learn-
ing stages. For each reach, we resampled the x and y hand positions to
match the median trial length within each learning segment, ensuring
an equal number of samples across trials. Finally, we averaged these
resampled trajectories across trials, yielding representative hand trajecto-
ries for early, mid, and late stages of learning.

To quantify systematic changes in movement trajectories during
learning, we divided the trials into three stages: early, mid, and late learn-
ing. We then assessed the dissimilarity between each pair of learning
stages (e.g., early vs mid), using within-segment dissimilarity as a base-
line (e.g., early vs early). To estimate dissimilarity between two stages,
we randomly selected one trial from each stage and measured the differ-
ence using dynamic time warping (DTW; Paliwal et al., 1982; Sakoe and
Chiba, 1978). This random sampling and DTW calculation were
repeated 5,000 times, and we reported the average of these 5,000 samples
as the estimated dissimilarity between learning stages. To estimate
within-stage dissimilarity, we applied the same method, sampling two
trials from the same stage (without replacement) for each comparison.

Statistical analysis. We used a within-subject design across all exper-
iments. Statistical analyses were conducted using Statsmodels 0.14.4
(Seabold and Perktold, 2010). For each test, we report degrees of free-
dom, test statistics, and p values in the text. We employed two-way
repeated-measures analysis of variance (ANOVA) and paired t tests.
In Experiment 1, the factors were Horizon (two levels: Horizon 1 and
Horizon 4), sequence type (two levels: Random and Learned), or learning
stage (three levels: early, mid, late). In Experiment 2, the factors included
hand (two levels: left and right), sequence type (two levels: Random and
Learned), or learning stage (three levels: early, mid, late). In Experiment
3, for each embedding length, we used paired ¢ tests to compare each
specific ITIs (either within or post the embedded section) with ITI in ran-
dom reaches. All ¢ tests were two sided.

Results

We trained participants to perform a sequential reaching task in
an exoskeleton robot. Participants moved a cursor that veridi-
cally represented the position of their right hand. On each trial,
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participants had to move the cursor to a set of 14 circular targets
as quickly and accurately as possible (Fig. 14; see Materials and
Methods). Target locations were selected with a rule that forced
consecutive targets to be 5 cm apart. We measured sequence-
specific learning by contrasting participants’ performance
between a set of sequences that were executed once (Random)
and a single fixed sequence that was repeated many times
(Learned). We used the average time between entering two con-
secutive targets (inter-target interval, ITI) as a measure of
performance.

B
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Learning in SRTT is mainly due to anticipation of the next
target

In our first experiment, we assessed the role of anticipating future
reach targets in sequence learning. We did so by asking partici-
pants (N=14, 8 female) to practice a sequence either while
they saw only one (Horizon 1) or four (Horizon 4) future reach
targets. The Horizon 1 condition was similar to a standard serial
reaction time task (SRTT) because the next reach target only
appeared after the previous target was captured (Fig. 1B,
Horizon 1; Movie 1). In the Horizon 1 condition, participants
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Figure 1.

Learning sequences in Horizon 1 versus Horizon 4. 4, Participants performed the task in an exoskeleton robot. A red cursor veridically indicated the tip of the index finger location.

B, A diagram example of targets shown to participants in Horizon 1 (left) and Horizon 4 (right). The arrow shows time. For both Horizon 1 and Horizon 4, the task included the following: reach to
the brightest target (box 1 to 2), dwell in the target for 50 ms, capture the target, the next target appears (box 2 to 3), reach to the new target (box 3 to 4). In Horizon 4 (left), in addition to the
brightest target, three future targets are also shown on the screen, and the order of these targets is shown with changes in brightness. C, Experimental design. Participants went through two
blocks. In both blocks, they practiced one specific sequence by repeating it 180 times combined with 40 random sequences. In one block these sequences were in Horizon 1 and the other
Horizon 4. The order of blocks was randomized for participants. D, Average inter-target interval (ITl) in Horizon 1 (left) and Horizon 4 (right) for one representative participant. Orange and blue
dots show average ITI for a learned or a random sequence trial respectively. Trials in the block are divided into three learning segments: early (black), mid (brown), and late (orange). The
horizontal black lines show the median ITl at the late stage. E, Reach trajectories in Horizon 1 (left) and Horizon 4 (right) for one representative participant. Yellow circles show the targets of the
sequence. Each trace shows participants average trajectories in early (black), mid (brown), and late (orange) stages of the learning. The black arrow shows the direction movement. F, Left,
Participants’ (n = 14) speed, as measured by average Inter-target interval (ITl). Right, participants’ movement smoothness as measured by average log dimensionless jerk (LDJ) in Horizon 1
(gray) and Horizon 4 (black). G, Participants’ trajectory changes during the learning process. Average dissimilarity (MSE) of trajectories is estimated between either within or between three stages
of learning (early, mid, late). For all plots: error bars show standard error. ** and *** show p < 0.01, p < 0.001.
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could become faster for learned sequences by anticipating the
next target’s location and preparing their movement before it
appeared. In the Horizon 4 condition, participants always saw
four future reach targets so they could anticipate the next target’s
location equally well for the random and learned sequences from
the first trial (Fig. 1B, Horizon 4; Movie 2).

Results for one representative participant are shown in
Figure 1D. In Horizon 1, like many previous SRTT-like para-
digms, the participant became faster (i.e., ITIs decreased) in exe-
cuting the learned compared with the random sequence (Fig. 1D,
Horizon 1). During the learning process, movement trajectories
evolved: early in learning (black traces), trajectories displayed
sharp transitions at each target, while later (orange traces), tran-
sitions became smoother (Fig. 1E, Horizon 1). Interestingly,
when the same participant practiced a sequence with Horizon
4, they were immediately faster than in late stage of Horizon 1
(Fig. 1E, Horizon 4). Also, movement trajectories for Horizon
4 were smooth from the first trial, with only small adjustments
over the course of learning (Fig. 1E, Horizon 4).

These observations were corroborated by the group-level
statistics: practicing a sequence in Horizon 1 reduced ITIs
by 115ms compared with random sequences (f;3)=>5.48,
p=105x10""% d=1.60; Fig. 1F). Executing sequences in
Horizon 4 was overall faster, even when comparing random
sequences in Horizon 4 to fully practiced sequences in Horizon
1 (t3=3.34, p=5.34x 107>, d=0.98). Faster movement pro-
duction was also associated with smoother movements. We
quantified movement smoothness by comparing the average
LDJ in the early, middle, and late stages of learning (Fig. 1F, right;
see Materials and Methods). Movements became smoother when
comparing early to late learning stages in Horizon 1 (¢(;3)=3.59,
p=326x10"°, d=0.91). With the full ability to anticipate
in Horizon 4, movements were overall smoother compared
with Horizon 1 (F(;3=107.33, p<1.18x 1077), even when
comparing late Horizon 1 with early Horizon 4 (f(;3)=4.86,
p=3.12x10"" d=0.56). Overall, these results suggest that in
the Horizon 1 condition participants mainly learned to anticipate
the next target’s location, allowing them to initiate movements
faster and to curve the movements in ways that optimize the
sequential trajectory. When the future targets were presented
in the Horizon 4 conditions, participants showed the same beha-
vior even for random sequences.

Critically, however, participants improved their ITI and
movement smoothness with practice for the learned sequence
even in the Horizon 4 condition. After practice they moved faster
(Random vs Learned: f(;3=9.07, p=5.48x 1077, d=1.06) and
smoother (Early vs Late: t(3=6.42, p=220x 107", d=0.55).
This suggests that there were some improvements in sequence
performance that did not depend on better anticipation of the
next targets. One explanation for such improvements is that par-
ticipants were able to specifically optimize the trajectory for the
trained sequence. The continuous nature of the task allowed us
to compare movement trajectories during the learning process
(Fig. 1E, Horizons 1 and 4). To quantify these changes, we calcu-
lated the shape dissimilarity of movement trajectories in early tri-
als to those of the mid and late trials (see Materials and Methods).
We used the average dissimilarity of the trial within each stage as
a baseline for comparison (Fig. 1G). In both Horizons, the trajec-
tory dissimilarities between early versus mid (H1: £;3)=6.47,
p=210x10"°, d=231, H4: t43=322, p=661x10"",
d=1.16) and mid versus late (HI: t;3=7.99, p=2.00 X% 1073,
d=2.45, H4: t43=3.85 p=6.61x 107>, d=1.43) were larger
than their within learning stage baselines. This clearly shows
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that there was a gradual change in trajectory shape with learning,
even in the Horizon 4 condition.

Together, these results show that in SRTT-like paradigms,
most of the sequence learning reflects better anticipation of the
future reach target, i.e., knowing what to do. Participants were
immediately better if that knowledge was visually available to
them (Horizon 4; see also Wong et al., 2015). Knowing what
comes next also allowed participants to immediately produce
a smoother movement trajectory for that sequence (Kashefi
et al., 2024). Importantly, however, even with the full knowledge
of the future items, practice still led to improvement, suggesting
that part of sequence learning can also reflect the optimization of
specific movement trajectories, i.e., learning how to perform a
sequence.

Sequence learning in Horizon 4 condition does not transfer
between effectors in extrinsic coordinates

Our results suggest that in the Horizon 4 condition, participants
adjusted their movement trajectories to optimize performance
for the practiced sequence, i.e., they acquired a motoric represen-
tation of the sequences. Alternatively, the observed improve-
ments may be partly attributed to cognitive factors such as
enhanced future planning (Ariani et al., 2021), enhanced move-
ment vigor due to familiarity with the practiced sequence (Wong
et al,, 2015), better eye-movement strategies, or more efficient
spatial attention allocation (Smyth et al., 1988). In all these cases,
the sequence improvements should rely on a spatial representa-
tion of the sequence of targets that is the same for the right and
left hand. Therefore, we would expect that these improvements
would generalize across limbs in an extrinsic frame of reference.
Consistent with this idea, learning in the SRTT (Horizon 1 con-
dition) tends to transfer well from one hand to the other (Grafton
et al., 2002; Verwey and Wright, 2004).

In contrast if the learning in the Horizon 4 condition is due to
a refinement of the movement trajectories that depends on the
limb geometry and dynamics (Sainburg et al., 2003; Sainburg
and Kalakanis, 2000), we would expect that there is little to no
transfer between arms for this type of learning in an extrinsic ref-
erence frame. Thus, by testing whether learning a sequence with
one arm transfers to executing the same sequence of targets with
other arm, we can assess to what degree improvements are due to
better anticipation of the target in allocentric space versus opti-
mization of limb-specific movement trajectories.

In our second experiment, participants (N=14, 7F) com-
pleted a learning block and a probe block (Fig. 2A4) both with
Horizon 4. During the learning block, participants learned one
sequence with their right hand and another with their left
hand. These hand-specific sequences were practiced 60 times
along with random sequences per hand to assess general learning.
Trials were randomized across hands and sequence types (see
Materials and Methods). By mixing left- and right-hand training,
we ensured that both hands received general sequence training
before the probe block.

By the end of the learning block, participants’ ITI for the
practiced sequence had significantly decreased for both the left
(tas =752, p=4.00x1075, d=091) and right (f.3 =5372,
p=127x10"* d=0.40) hands. As expected, the left hand was
generally slower since all participants were right-handed
(F1,13)=82.61, p<5.38 x 1077; Fig. 2B, Learning Block). In the
probe block, participants were tested on a new set of random
sequences (20 trials per hand), the sequence learned with the
same hand (20 trials), and the sequence learned with the opposite
hand (30 trials). The learned sequences were transferred in
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Learning with Horizon does not transfer between effectors in extrinsic coordinates. 4, Ex
and another with their left hand, as well as a set of random sequences for each hand. Sequence type and hand were randomized. In the probe block, we tested the participants on three sequence
types for each hand: a set of new random sequences, the sequence practiced with the same hand, and the sequence practiced with the opposite hand. B, Inter-target interval (ITl) for learning and

Figure 2.

probe blocks. Sequence A (orange) and B (green) are learned with the left and right hand, respective

perimental design. In the learning block, participants practiced one sequence with their right

ly. In the probe block, Sequence A is also executed with the right hand and Sequence B with

the left. €, Average movement trajectories for one representative participant. Top, Average trajectory in early, mid, and late stagSuppes of learning Sequence A in the left hand and for Sequence B
with right hand. Bottom, Average trajectories for Sequences A and B when executed with the opposite hand (right and left) for the first 10 (early), second 10 (mid), and third 10 (late) trials. The

black dotted trace shows how each sequence was executed in the late stages with the other hand in

the learning block. D, Changes in participants’ movement trajectory. Average dissimilarity of

trajectories within or between three stages of learning (early, mid, late) for Sequence A (orange) or B (green). E, Trajectory dissimilarity between late stages of learning to early, mid and late
stages of probe block, where the same sequence is executed with the opposite hand. F, Trajectory dissimilarity within or between early, mid, and late stages of executing the same sequences

with the opposite hand in the probe block. For all plots: error bars show standard error. ** and

**% show p < 0.01, p < 0.001.
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extrinsic coordinates, meaning that all visual cues remained con-
sistent between learning and probe blocks. As in the end of learn-
ing, participants continued to perform slower on the random
sequences than on the sequences learned with that hand
(Fig. 2B, Probe Block, left). Importantly, the first 10 trials of
the transferred sequence were not significantly different from
random sequence (left hand: t3)=1.10, p=0.280; right hand:
tas =1.41, p=0.18). It was only after another 10 trials that the
ITIs became significantly different from the random sequences
(left hand: #,3=3.0, p=1.03x10"% d=04; right hand:
tas =417, p=1.09 x 10>, d=0.32), indicating that participants
started to learn the transferred sequence with the new hand.

We also monitored changes in movement trajectories in both
blocks. Figure 2C shows average trajectories during learning for
one representative participant. During the initial learning, simi-
lar to the first experiment, movement trajectories for both hands
changed during learning (Fig. 2C, Learning block). To quantify
this observation at the group level, we again used trajectory dis-
similarity between the early, mid, and late stages of learning and
compared these to the dissimilarity within each of these stages as
a baseline. In the learning block, we replicated Experiment 1 with
two hands. The dissimilarity between early versus mid (Left-A:
taz=13.28, p=6.14x10"", d=2.71, Right-B: f43 =5.142,
p=116x10"" d=1.52) and mid versus late (Left-A: t(3="7.14,
p=800x10"° d=1.69, Right-B: t,3=670, p=150x107>
d=1.67) were both larger than their respective baselines, suggest-
ing a systematic change in movement trajectories with learning
(Fig. 2D).

Importantly, in line with our prediction, after the transfer to
the other hand, participants executed the same sequence with a
different trajectory (Fig. 2C, Probe block). The trajectory for
the early, mid, and late stages of the probe block (solid traces)
were qualitatively different from the trajectory from the late
learning block (dotted traces). We quantified this by comparing
the trajectories during late learning to that of the first (early), sec-
ond (mid), and third (late) 10 trials with the trajectory from the
opposite hand (Fig. 2E). For both hands, the early transfer trials
were highly dissimilar to how the sequence was executed in the
late learning block. The same was true for middle and late trans-
fer trials, which were also highly dissimilar to how they were exe-
cuted originally in the learning block (In both hands, all learning
stage comparisons: f(;3)>6.52, p<1.90x107°). These results
show that participants had to acquire a new trajectory to execute
the same sequence with the other hand. After the transfer, the
trajectories kept changing within the new effector. The dissimi-
larity between post-transfer early versus mid trials was higher
than within early baseline (Right-A: f3=6.11, p=3.70x 107>,
d=1.37, Left-B: t;3)="7.41, p=>5.00 x 107%, d=1.52). The same
was true for mid versus late dissimilarities (Right-A: #;3y=5.50,
p=100x10"% d=132, Left-B: t;3=6.79, p=130x10"",
d = 1.66; Fig. 2F). Together, the post-transfer ITI results and tra-
jectory changes show that participants had to relearn a trajectory
optimized for the new effector.

The ITI results from this experiment also confirm that learn-
ing with the Horizon of future targets was not due to enhanced
anticipation of future targets. Since the visual cues in both the
original and transferred sequences were identical, any improve-
ments in anticipation should have been immediately transferable
to the other effector—an effect we did not observe. Instead, the
trajectory data suggest that learning with Horizon is associated
with effector-specific modifications in movement trajectories,
occurring only for the effector with which the sequence was orig-
inally learned.
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Sequence learning with horizon is not due to improvements in
single reaches

Our experiments so far have shown that practicing a sequence in
Horizon 4 leads to fine-tuning of hand- and sequence-specific
trajectories. How are these trajectories represented? At one
extreme, the motor system may store the entire trajectory as
one single unit. At the other extreme, the motor system may
have optimized small chunks of the sequence, for example, a
curved movement through three targets. In both previous exper-
iments, we observed changes in trajectories that span multiple
targets, which makes it unlikely that learning occurs at the level
of a single target or pairs of targets. However, to find the size of
the smallest generalizable sequence representation, we tested
how many elements of the original sequence are necessary to trig-
ger the learned ITI reduction. Answering this question could pro-
vide insight into the fundamental unit of sequence learning—
individual reaches, transitioning between two reaches, or poten-
tially subsequences consisting of multiple reaches and their
transitions.

We conducted a two-block experiment (Fig. 3A). In both
blocks, sequences were presented in Horizon 4. In the first block,
participants (N=28, 16F) practiced a single subject-specific
sequence for 160 trials, along with 40 random sequences. In
the second block, we randomly selected between 1 and 5 consec-
utive reach targets from the practiced sequence (orange circles,
dotted line) and embedded them at random locations in other-
wise random sequences (blue circles solid lines; Fig. 3B; see
Materials and Methods). Embedding a single target tests for
improvements in reaching a specific target regardless of start
location (Fig. 3B, 1 Target). Embedding two targets tests for
improvements in executing individual reaches. Embedding three
targets tests for improvements in transitions between two reaches
(Fig. 3B, 3 Targets), while embedding more than three targets
assesses performance on larger parts of the sequence, involving
multiple reaches and transitions (Fig. 3B, 5 Targets).

The participants’ average ITI during fully random (dotted
blue line) and fully practiced (dotted orange line) trials in
Block 2 served as upper and lower reference, respectively
(Fig. 3C; see Materials and Methods). In the trials with embedded
parts of the trained sequences, the ITIs did not differ significantly
from fully random sequences, neither before or after the embed-
ded sections (Fig. 3C, dark blue dots). Additionally, we observed
no speed-up in reaches leading into (¢,7) < 1.45, p>0.15 for all
num targets embedded; Fig. 3C, light blue dots) or exiting
(t27y<2.01, p>0.054 for all num targets embedded; Fig. 3C,
gray dots) the embedded segments. A reduction in ITT was
only observed for reaches when the embedded section contained
four (tp7=6.16, p=1.31x10"°% d=0.33) or five targets
(te7) =527, p=1.48x 107>, d=0.34). No speed-up occurred
when only two or three (f(,7) < 1) targets were embedded.

This experiment revealed that the learned improvements did
not occur at the level of single targets, single reaches, or even
transitions between two reaches. Instead, the improvements
emerged over a longer time scale and are only triggered when a
larger part of the practiced sequence is repeated.

Learning with Horizon is prompted by the context of previous
reaches

We then asked where within the embedded segment the
speed-up occurred. The pattern of ITI reduction can reveal
whether the history of the previous reaches or the look ahead
of future reaches is required to trigger the sequence-specific
memory. If the previous reaches are essential, we would expect
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Learning with horizon is not due to improvements in single reaches or transition of reaches. 4, Experimental design. Participants completed one block with 160 trials of a specific

sequence, interspersed with 40 random sequences. In the second block, participants performed fully random sequences (R), fully practiced sequences (A¢), or sequences containing 5 to 1 practiced
reach targets embedded within otherwise random sequences (As to A;). B, Example embedded trials. Orange targets: targets 511 of the practiced reach sequence for one representative
participant. Blue targets: random sequences with one, three, or five embedded targets from the practiced sequence. C, Average ITI for Block 2 for random reaches (blue), reaches before (light
blue), in (red) and after (gray) the embedded sequence. Average ITI for the learned sequence (full target embedding; orange). Error bars show the standard error of the mean, and *** indicates

p <0001,

less ITI reduction at the beginning of the embedded segment,
since the first embedded reach is preceded by random reaches.
Similarly, if anticipation of future reaches is important, we would
expect smaller ITT reduction toward the later part of the embed-
ded segment since the last embedded reach is followed by ran-
dom reaches.

Within the embedded section (Fig. 4A,B), the ITI for the first
reach (green dot) was not significantly different from that of the
reaches in random sequences. This was true regardless of how
many targets were embedded (t(,7) < 2 for all num targets embed-
ded). Reliable ITT reductions were observed only for the second,
third, and fourth reaches in the embedded section for trials with
four targets embedded (second: t,7=3.45 p=1.81x 1073,
d=0.38; third: t,;)=3.57, p=134x 10", d=0.35). The same
was true for trials with five targets embedded (second: f,7) = 3.09,
p=4.60x 107>, d=0.41; third: t,;)=2.37, p=2.49x 107>, d=0.24;
fourth: t,7)=3.36, p=2.32x 107>, d=0.39). The lack of speed-up
in the first embedded reach clearly shows the importance of the
immediate history of reaches.

To summarize the importance of past and future reaches
across trials with different embedding length, we used isolated
embedded reaches as a baseline (Fig. 4C, None). Relative to
this, we found no ITI speed-up when only one future came
from the practiced sequence (f,7)=0.7, p=0.48), suggesting
that anticipating a single trained reach is insufficient to trigger
speed-up (Fig. 4, One After). When a single trained reach

preceded the current reach, we observed a nonsignificant trend
toward reduced ITI (t,7)=2.04, p=0.0504, d=0.173). A signifi-
cant ITT reduction only occurred when two preceding reaches
were trained (t7)=4.93, p=3.60x 10>, d=0.44), highlighting
the importance of preceding reach context in triggering the
speed-up. Finally, embedded reaches flanked by two embedded
reaches before and one after showed a small, nonsignificant addi-
tional reduction compared with two preceding embedded
reaches alone (f,7=0.568, p=0.57), reinforcing that future
reach context has minimal impact on ITI reduction. These
findings underscore that what is learned in the Horizon task is
only activated in the context from two familiar previous reaches.

Discussion

The mechanisms for sequence learning can be separated into
three broad categories: first, improving individual movements,
independent of their sequence context; second, learning to antic-
ipate what are the movement elements in the sequence; third,
learning a sequence-specific representation that encodes how
each movement should be done within the context of the
sequence. In this paper we sought to determine to what degree
each of the mechanisms can explain improvements in a contin-
uous reaching task. First, we compared performance in trained
sequences with that in random sequences to ascertain that the
improvements were not due to improvements in executing iso-
lated movements. By showing the participants either only the
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Learning with horizon is context dependent. 4, Sample trial from a 5-target embedded sequence. Orange circles: targets 511 of the practiced sequence. Blue circles: targets 5—11

for the embedded trial, with reaches leading into (light blue) and exiting (gray) the embedded section. B, Average inter-target interval (ITl) for embedded trials. The blue and orange dotted lines
represent [Tls for fully random and fully practiced trials, respectively. Dark blue dots correspond to ITls for random reaches outside the embedded segments in the embedded trials. As in A, the
green, red, pink, and beige dots indicate ITls for the four possible reaches within the embedded section. €, Average inter-target interval (ITl) for practiced reaches without practice reaches before
or after (None), with one reach following (One After), one reach preceding (One Before), two reaches preceding (Two Before), or two preceding and one following (Two Before, One after). Error
bars show the standard error of the mean, and *, **, and *** indicates p < 0.05, p < 0.01, and p < 0.001.

next target (Horizon 1), or the next four targets (Horizon 4), we
then contrasted learning with and without information about
what comes next.

Being able to see the future reach targets accelerated the par-
ticipant’s performance: even in the first trial in Horizon 4, they
moved faster and more smoothly than in the late stages of learn-
ing in Horizon 1. This observation fully supports the conclusions
drawn by Wong et al. (2015), who demonstrated that in a discrete
serial reaction time task (SRTT), most of the decrease in move-
ment time is due to participants learning to anticipate the future
targets. Our results also show that knowing “what” to do not only
speeds up the initiation of the movement—but also allowed par-
ticipants to coarticulate the movements in anticipation of the
next targets, leading to much smoother trajectories.

In contrast to Wong et al. (2015), however, we found clear evi-
dence for sequence-specific improvements with practice even
when participants had full knowledge (i.e., could see) of the
future targets (in Horizon 4). Participants achieved this improve-
ment by optimizing how movements were executed in the

sequence, evidenced by a gradual change of the trajectory across
the learning process. We then showed that this learned sequence
representation is effector specific when the sequence is trans-
ferred in an extrinsic frame of reference and that it does represent
a sequential context of three or more reaches.

Learning what to do next

Our results support the conclusion that improvements in the
SRTT task are mainly due to learning what the next movement
will be (Howard et al., 1992; Wong et al, 2015). SRRT tasks
became a popular paradigm to study sequence learning, because
it was shown that learning in these tasks can occur outside con-
scious awareness and independent of episodic memory systems.
This suggested that the SRTT may rely on a single procedural
memory system, unrelated to conscience anticipation of what
should be done next (Nissen and Bullemer, 1987). However,
there are at least three pieces of evidence suggesting that
sequence-specific improvements observed in SRTT can never-
theless be influenced by anticipatory processes, whether these
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are accessible to consciousness or not. First, after learning, partic-
ipants demonstrate some fragmentary knowledge of sequence
cues when probed with sensitive measures like recognition or
production tasks (Reber and Squire, 1998); this observation is
true even in amnestic patients (Reber and Squire, 1994). Most
reported implicit learning in SRTT is due to participants learning
fragmentary knowledge of the sequence items by learning the
distribution of presented cues (for review, see Shanks, 2005;
Shanks and St. John, 1994). Second, learned improvements often
transfer to other effectors either fully or partially (Cohen et al,,
1990; Grafton et al., 2002; Verwey and Wright, 2004). Third,
when a task is designed such that participants can fully predict
the next cues, practicing the sequence does not lead to any
sequence-specific improvements (Howard et al., 1992; Wong
et al.,, 2015).

To study motoric aspects of sequence learning, we provided
participants with clear and direct knowledge of the upcoming
sequence items in our Horizon 4 condition. This is common
practice in the discrete sequence production (DSP) task, in which
participants are presented with an entire sequence and are
instructed to execute it as fast as possible. Even under such con-
ditions, however, learning improvements cannot be attributed
unambiguously to pure motor learning. For example, in most
finger motor sequence task, the required finger presses are indi-
cated as a list of digits (Berlot et al., 2020; Karni et al., 1995;
Rhodes et al., 2004). While the digits provide complete informa-
tion about the sequence items, the stimulus-response mapping
from numbers to fingers is relatively abstract and requires a time-
consuming process. Consequently, a substantial portion of learn-
ing in these tasks may be explained by an improved ability to
perform the process of stimulus-response mapping quickly and
in parallel with ongoing execution (Ariani et al, 2024, 2021;
Kornysheva and Diedrichsen, 2014; Shahbazi et al., 2024a).
Consistent with this idea, learning of DSP tasks often generalizes
at least partially to the other limb in an extrinsic reference frame
(Wiestler et al., 2014; see Abrahamse et al., 2013 for a review).

In contrast, in our reaching task, learning did not generalize to
the other limb in an extrinsic frame of reference. One possible
explanation for this difference is that the stimulus-response map-
ping from spatially presented targets and reaching movements
toward these targets is already very fast and automatic (Day
and Lyon, 2000; Diedrichsen et al., 2004, 2001; Goodale and

Milner, 1992; Pruszynski et al., 2010), such that sequence learn-
ing cannot further improve the speed of the translation from the
target to the desired movement.

Learning how to perform a sequence: representation and
possible neuronal mechanisms

In Horizon 4, we observed sequence-specific improvements. Our
embedding experiment (Figs. 3, 4) demonstrated that more than
three trained reaches are needed to see a behavioral advantage.
This shows that learning did not occur at the level of single or
even pairs of reaches. Instead, the learned representations encap-
sulate a longer sequential context of the movement, without
being a fixed representation of the entire sequence (Buchner
et al., 1998; Shahbazi et al., 2024b).

These results suggest that participants planned a continuous
trajectory through the multiple targets ahead (Kalidindi and
Crevecoeur, 2024; Kashefi et al., 2024; Wong et al., 2016). Over
the course of learning, repeated execution of this trajectory led
to gradual improvements in the trajectory’s precision and
efficiency (Shmuelof et al., 2012). When encountering the same
targets within a random sequence (Figs. 3, 4), participants could
recall a motor memory of how to execute these previously prac-
ticed trajectory shapes to accelerate movement execution
(Morasso and Mussa Ivaldi, 1982; Viviani and Terzuolo, 1982).
We also observed that the relevant memory was triggered, not
by a match of the future movement targets, but rather by the
recent movement history (Fig. 4). At the same time, we know
from Experiment 1 (Fig. 1) that participants planned the next
future targets ahead. This counterintuitive, yet interesting, obser-
vation suggests that the system that is learning the sequence can
significantly benefit from the knowledge of future movement.
However, once learned, triggering the learned memory mostly
relies on the context of the previous action.

The relatively long duration of the learned elements makes it
unlikely that the underlying representations are learned in pri-
mary motor cortex (M1). Previous studies have shown that activ-
ity patterns in M1 can be explained by a superposition of the
activity related to the individual movements, both for reaches
(Zimnik and Churchland, 2021) and finger presses (Yokoi
et al.,, 2018)—with very little evidence that the representation
of individual movement elements changes with the sequential
context. Thus, it is possible that M1 is blind to sequential
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dependencies at least over the time window identified in our
experiments. Learning long sequence of movement has been
reported to be associated with changes in parietal and premotor
areas (Berlot et al., 2021, 2020). These areas likely take an inter-
mediate position between deciding what to do next and how to
do it (Diedrichsen and Kornysheva, 2015; Wong et al., 2016).
That is, these areas may not fully encode all the motoric details
of the movement but may seed an effector-specific region in
M1, which allows it to execute the movements with an optimized
trajectory (Churchland et al., 2010).

At the level of neural dynamics, sequence-specific optimiza-
tion of individual movements could potentially be implemented
in neuronal populations by selecting the optimal preparatory
state for each reach (Fig. 5). In Horizon 1, since no information
about the upcoming movements is known, the preparatory state
for reaching to target A is selected among a large set of potential
initial states that all lead to movement to target A, leading to nat-
ural trial to trial variability of reaches. In the case of Horizon 4
and before any practice (Random), information about the next
target cue is used to seed the system with a preparatory state
that leads to biases in reach kinematics that are optimized for
the next reach in the sequence. With practice of a sequence in
Horizon 4, the sequence representation formed in other brain
areas allows further refinement of the preparatory states that
leads to reaches optimized for even longer segments of the
sequence. Future electrophysiological experiments are necessary
to test these potential mechanisms. The continuous nature of our
sequence paradigm offers a useful framework for investigating
these hypotheses.

Data Availability

All raw data generated in this study will be made publicly avail-
able upon publication.

References

Abrahamse EL, Ruitenberg MFL, de Kleine E, Verwey WB (2013) Control of
automated behavior: insights from the discrete sequence production task.
Front Hum Neurosci 7:82.

Ariani G, Kordjazi N, Pruszynski JA, Diedrichsen J (2021) The planning hori-
zon for movement sequences. eNeuro 8:ENEURO.0085-21.2021.

Ariani G, Shahbazi M, Diedrichsen J (2024) Cortical areas for planning
sequences before and during movement. ] Neurosci 45:¢1300242024.
Balasubramanian S, Melendez-Calderon A, Burdet E (2012) A robust and
sensitive metric for quantifying movement smoothness. IEEE Trans

Biomed Eng 59:2126-2136.

Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E (2015)
On the analysis of movement smoothness. ] Neuroeng Rehabil 12:112.

Berlot E, Popp NJ, Diedrichsen J (2020) A critical re-evaluation of fMRI sig-
natures of motor sequence learning. Elife 9:e55241.

Berlot E, Popp NJ, Grafton ST, Diedrichsen J (2021) Combining repetition sup-
pression and pattern analysis provides new insights into the role of M1 and
parietal areas in skilled sequential actions. ] Neurosci 41:7649-7661.

Buchner A, Steffens MC, Rothkegel R (1998) On the role of fragmentary
knowledge in a sequence learning task. Q J Exp Psychol Sec A 51:251-281.

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV (2010)
Cortical preparatory activity: representation of movement or first cog in a
dynamical machine? Neuron 68:387-400.

Cohen A, Ivry RI, Keele SW (1990) Attention and structure in sequence learn-
ing. ] Exp Psychol Learn Mem Cogn 16:17-30.

Day BL, Lyon IN (2000) Voluntary modification of automatic arm move-
ments evoked by motion of a visual target. Exp Brain Res 130:159-168.

Diedrichsen ], Hazeltine E, Kennerley S, Ivry RBRB (2001) Moving to directly
cued locations abolishes spatial interference during bimanual actions.
Psychol Sci 12:493-498.

Diedrichsen J, Nambisan R, Kennerley SWW, Ivry RBB (2004) Independent
on-line control of the two hands during bimanual reaching. Eur ]
Neurosci 19:1643-1652.

J. Neurosci., August 13, 2025 « 45(33):¢0299252025 - 11

Diedrichsen J, Kornysheva K (2015) Motor skill learning between selection
and execution. Trends Cogn Sci 19:227-233.

Engel KC, Flanders M, Soechting JF (1997) Anticipatory and sequential
motor control in piano playing. Exp Brain Res 113:189-199.

Fee MS, Scharff C (2010) The songbird as a model for the generation and
learning of complex sequential behaviors. ILAR ] 51:362-377.

Goodale MA, Milner AD (1992) Separate visual pathways for perception and
action. Trends Neurosci 15:20-25.

Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the
nondominant left hand. Exp Brain Res 146:369-378.

Hogan N, Sternad D (2009) Sensitivity of smoothness measures to movement
duration, amplitude, and arrests. ] Mot Behav 41:529-534.

Howard JH, Mutter SA, Howard DV (1992) Serial pattern learning by event
observation. ] Exp Psychol Learn Mem Cogn 18:1029-1039.

Kalidindi HT, Crevecoeur F (2024) Task-dependent coarticulation of move-
ment sequences. Elife 13:RP96854.

Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995)
Functional MRI evidence for adult motor cortex plasticity during motor
skill learning. Nature 377:155-158.

Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R,
Ungerleider LG (1998) The acquisition of skilled motor performance:
fast and slow experience-driven changes in primary motor cortex. Proc
Natl Acad Sci USA 95:861-868.

Kashefi M, Reschechtko S, Ariani G, Shahbazi M, Tan A, Diedrichsen J,
Pruszynski JA (2024) Future movement plans interact in sequential
arm movements. Elife 13:RP94485.

Keele SW, Ivry R, Mayr U, Hazeltine E, Heuer H (2003) The cognitive and
neural architecture of sequence representation. Psychol Rev 110:316-339.

Kornysheva K, Diedrichsen J (2014) Human premotor areas parse sequences
into their spatial and temporal features. Elife 3:e03043.

Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM (2019) Motor learn-
ing. Compr Physiol 9:613-663.

Moisello C, Crupi D, Tunik E, Quartarone A, Bove M, Tononi G, Ghilardi MF
(2009) The serial reaction time task revisited: a study on motor sequence
learning with an arm-reaching task. Exp Brain Res 194:143-155.

Morasso P, Mussa Ivaldi FA (1982) Trajectory formation and handwriting: a
computational model. Biol Cybern 45:131-142.

Nissen MJ, Willingham D, Hartman M (1989) Explicit and implicit remem-
bering: when is learning preserved in amnesia? Neuropsychologia 27:341-
352.

Nissen M]J, Bullemer P (1987) Attentional requirements of learning: evidence
from performance measures. Cogn Psychol 19:1-32.

Oldfield RC (1971) The assessment and analysis of handedness: the
Edinburgh inventory. Neuropsychologia 9:97-113.

Paliwal KK, Agarwal A, Sinha SS (1982) A modification over Sakoe and
Chiba’s dynamic time warping algorithm for isolated word recognition.
Signal Processing 4:329-333.

Pashler H (1994) Dual-task interference in simple tasks: data and theory.
Psychol Bull 116:220-244.

Perruchet P, Amorim MA (1992) Conscious knowledge and changes in per-
formance in sequence learning: evidence against dissociation. J Exp
Psychol Learn Mem Cogn 18:785-800.

Picard N, Matsuzaka Y, Strick PL (2013) Extended practice of a motor skill is asso-
ciated with reduced metabolic activity in M1. Nat Neurosci 16:1340-1347.

Pruszynski JA, King GL, Boisse L, Scott SH, Flanagan JR, Munoz DP (2010)
Stimulus-locked responses on human arm muscles reveal a rapid neural
pathway linking visual input to arm motor output: visual responses on
human arm muscles. Eur ] Neurosci 32:1049-1057.

Reber PJ, Squire LR (1994) Parallel brain systems for learning with and with-
out awareness. Learn Mem 1:217-229.

Reber PJ, Squire LR (1998) Encapsulation of implicit and explicit memory in
sequence learning. ] Cogn Neurosci 10:248-263.

Rhodes BJ, Bullock D, Verwey WB, Averbeck BB, Page MPA (2004) Learning
and production of movement sequences: behavioral, neurophysiological,
and modeling perspectives. Hum Mov Sci 23:699-746.

Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB (2003) Effects of altering
initial position on movement direction and extent. ] Neurophysiol 89:
401-415.

Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics
during dominant and nondominant arm reaching. ] Neurophysiol 83:
2661-2675.

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans Acoust 26:43-49.



12 « J. Neurosci., August 13, 2025 « 45(33):20299252025

Scott SH (1999) Apparatus for measuring and perturbing shoulder and
elbow joint positions and torques during reaching. ] Neurosci Methods
89:119-127.

Seabold S, Perktold J (2010) Statsmodels: econometric and statistical model-
ing with Python. Proceedings of the Python in Science Conference.
Presented at the Python in Science Conference. SciPy. pp 92-96.

Shahbazi M, Ariani G, Kashefi M, Pruszynski JA, Diedrichsen ] (2024a)
Neural correlates of online action preparation. J Neurosci 44:
€1880232024.

Shahbazi M, Pruszynski JA, Diedrichsen ] (2024b) Repetition effects reveal
the sub-sequence representation of actions. bioRxiv.

Shanks DR (2005) Implicit learning. In: Handbook of cognition (Lamberts K,
Goldstone R1, eds), Vol. 1, pp 202-220. London: Sage.

Shanks DRS, John MF (1994) Characteristics of dissociable human learning
systems. Behav Brain Sci 17:367-395.

Shmuelof L, Krakauer JW, Mazzoni P (2012) How is a motor skill learned?
Change and invariance at the levels of task success and trajectory control.
] Neurophysiol 108:578-594.

Smyth MM, Pearson’s NA, Pendleton LR (1988) Movement and working
memory: patterns and positions in space. Q J Exp Psychol A 40:497-514.

Verwey WB (2003) Effect of sequence length on the execution of familiar key-
ing sequences: lasting segmentation and preparation? ] Mot Behav 35:
343-354.

Verwey WB, Wright DL (2004) Effector-independent and effector-dependent
learning in the discrete sequence production task. Psychol Res 68:64-70.

Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics.
Neuroscience 7:431-437.

Kashefi et al. ® Components of Motor Sequence Learning

Warren TL, Tumer EC, Charlesworth JD, Brainard MS (2011) Mechanisms
and time course of vocal learning and consolidation in the adult songbird.
J Neurophysiol 106:1806-1821.

Wiestler T, Waters-Metenier S, Diedrichsen J (2014) Effector-independent
motor sequence representations exist in extrinsic and intrinsic reference
frames. ] Neurosci 34:5054-5064.

Willingham DB, Nissen M]J, Bullemer P (1989) On the development of pro-
cedural knowledge. ] Exp Psychol Learn Mem Cogn 15:1047-1060.

Willingham DB (1999) Implicit motor sequence learning is not purely per-
ceptual. Mem Cognit 27:561-572.

Willingham DB, Wells LA, Farrell JM, Stemwedel ME (2000) Implicit motor
sequence learning is represented in response locations. Mem Cognit 28:
366-375.

Wong AL, Lindquist MA, Haith AM, Krakauer JW (2015) Explicit knowledge
enhances motor vigor and performance: motivation versus practice in
sequence tasks. ] Neurophysiol 114:219-232.

Wong AL, Goldsmith J, Krakauer JW (2016) A motor planning stage repre-
sents the shape of upcoming movement trajectories. ] Neurophysiol 116:
296-305.

Wong AL, Krakauer JW (2019) Why are sequence representations in primary
motor cortex so elusive? Neuron 103:956-958.

Yokoi A, Bai W, Diedrichsen J (2017) Restricted transfer of learning between
unimanual and bimanual finger sequences. ] Neurophysiol 117:1043-1051.

Yokoi A, Arbuckle SA, Diedrichsen J (2018) The role of human primary motor
cortex in the production of skilled finger sequences. ] Neurosci 38:1430-1442.

Zimnik AJ, Churchland MM (2021) Independent generation of sequence ele-
ments by motor cortex. Nat Neurosci 24:412-424.



	 Introduction
	 Materials and Methods
	Outline placeholder
	Outline placeholder
	 Participants
	 Apparatus
	 General procedures
	 Procedures for Experiment 1
	 Procedures for Experiment 2
	 Procedures for Experiment 3
	 Time, smoothness, and trajectory change analysis
	 Statistical analysis



	 Results
	 Learning in SRTT is mainly due to anticipation of the next target
	 Sequence learning in Horizon 4 condition does not transfer between effectors in extrinsic coordinates
	 Sequence learning with horizon is not due to improvements in single reaches
	 Learning with Horizon is prompted by the context of previous reaches

	 Discussion
	 Learning what to do next
	 Learning how to perform a sequence: representation and possible neuronal mechanisms

	 Data Availability
	 References

