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Abstract  

There is compelling evidence that the human cerebellum is engaged in a wide array of motor and 

cognitive tasks. A fundamental question centers on whether the cerebellum is organized into distinct 

functional sub-regions.  To address this question, we employed a rich task battery, designed to tap into a 

broad range of cognitive processes. During four functional magnetic resonance imaging (fMRI) 

sessions, participants performed a battery of 26 diverse tasks comprising 47 unique conditions. Using 

the data from this multi-domain task battery, we derived a comprehensive functional parcellation of the 

cerebellar cortex, and evaluated it by predicting functional boundaries in a novel set of tasks. The new 

parcellation successfully identified distinct functional sub-regions, providing significant improvements 

over existing parcellations derived from task-free data. Lobular boundaries, commonly used to 

summarize functional data, did not coincide with functional subdivisions. This multi-domain task 

approach offers novel insights into the functional heterogeneity of the cerebellar cortex.  
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Introduction  

Converging lines of research provide compelling evidence that the cerebellum is engaged in a broad 

range of cognitive functions, well beyond its historical association with sensorimotor control and 

learning1. Anatomical tracing studies in nonhuman primates have revealed reciprocal connections with 

parietal and prefrontal association cortices2 . Individuals with lesions to the cerebellum exhibit behavioral 

impairments on tasks designed to assess non-motor processes such as duration discrimination, 

attentional control, spatial cognition, emotion perception, and executive and language function. Perhaps 

most intriguing, neuroimaging studies consistently reveal activations of the cerebellar cortex during a 

diverse set of motor, cognitive, and social/affective tasks3.  

This raises the question of whether the cerebellum can be meaningfully subdivided into a 

discrete set of regions, reflecting distinct functional contributions across diverse task domains. In 

contrast to the cerebral cortex, the cytoarchitectonic organization is remarkably uniform across the entire 

cerebellar cortex. Due to this homogeneity, neuroimaging and neuropsychological studies have mostly 

relied on the microanatomical folding of the cerebellum along the superior to inferior axis into 10 

lobules (numbered I-X)4. More recently, functional parcellations based on task-free fMRI data have been 

proposed5–7. However, the degree to which these proposed boundaries correspond to functional divisions 

remains unclear. Task-based studies have been limited by the lack of a comprehensive neuroimaging 

data set. A few studies have employed data sets involving multiple tasks7,8, but the small number of task 

conditions (<7) and the lack of a common measurement baseline has made it difficult to derive and 

evaluate a comprehensive task-based functional parcellation. Alternatively, the functional heterogeneity 

of the cerebellum has been explored using meta-analytic approaches9, which has the disadvantage that it 

requires data sets to be combined across different groups of participants.  

 In the present study, we aimed to fully characterize the functional organization of the cerebellar 

cortex by employing two large and diverse task sets comprising 47 unique conditions, designed to 

engage a broad range of sensorimotor, cognitive, and social/affective processes. Using a block design, 

activation for each task was measured over four fMRI scanning sessions against a common baseline.  

Our task set was successful in eliciting activation across the extent of the cerebellar cortex, allowing us 

to derive a novel parcellation in which we characterized the functional profile of cerebellar sub-regions 

in unprecedented detail. The breadth of the task sets also enabled us to summarize the functional 
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specialization of the regions in terms of the underlying latent motor, cognitive, and social/affective 

features.   

We developed a novel metric to evaluate the strength of the proposed functional boundaries.  

This allowed us to address a fundamental question, namely whether there are distinct functional regions 

in the cerebellum, or whether the functional specialization is better described in terms of continuous 

gradients7. The approach is predicated on the idea that if a boundary between two regions divides 

functionally heterogeneous regions, then the activation pattern for voxel pairs that lie within the same 

region should be more correlated than voxel pairs that span a boundary. The metric takes into account 

the fact that the functional similarity of two voxels will depend on their spatial distance. Critically, a 

meaningful functional parcellation needs to be predictive of boundaries for the activation patterns 

elicited by a different set of tasks. Using this approach, we demonstrate that the cerebellum has discrete 

functional regions, and that our task-based parcellation is superior to alternatives in predicting functional 

boundaries. This new functional parcellation of the cerebellar cortex provides an important step towards 

understanding the role of the cerebellum across diverse functional domains.  

Results  

To obtain a comprehensive functional parcellation of the cerebellar cortex, we developed a multi-

domain task battery (MDTB) of 26 tasks comprising 47 unique task conditions (Fig 1a; Supplementary 

Table 1), selected to encompass a wide range of processes required for motor, cognitive, and 

affective/social function.  To avoid strong learning-related changes, 24 healthy individuals completed 

extensive training on the task protocol (~14 h) before scanning. During scanning, each task was 

performed once per imaging run for a 35 s block (Fig 1b). To make this approach feasible, the tasks 

were split into two sets (Fig 1a), and each task set was tested in two separate fMRI scanning sessions, 

resulting in a total of ~5.5 hours (19,136 timepoints) of functional data per participant. 
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Figure 1. (a) Experimental Design. A total of 4 fMRI scanning sessions were collected on the same set 

of participants, using 2 tasks sets. Each set consisted of 17 tasks, with 8 tasks in common. The tasks 

were modeled as 29 task conditions in set A, and as 32 in set B, with 14 task conditions common across 

both task sets. (b) Timing of each task: 5 s instruction period followed by 30 s of task execution. Tasks 

consisted of a different number of task conditions (gray bars, range 1-3). (c) Unthresholded, group-

averaged motor feature maps, displayed on a surface-based representation of the cerebellar cortex10. (d) 

Group activation maps for selected tasks, corrected for motor features. Red-to-yellow colors indicate 

higher levels of activation and blue colors denote decreases in activation (relative to the mean 

activation across all conditions). (e) Within task set reliability of activation patterns for each voxel.  

Identification of motor features from a task-based battery 

As a first step, we sought to identify regions within the cerebellum in which the hemodynamic response 

was closely tied to motor function, specifically hand and eye movements.  Our experimental design did 

not include specific contrasts that isolated each motor component. Instead, we varied the motor demands 

across task conditions; for example, the finger sequencing task involved ~40 left and right finger 

responses per 30 s, the theory of mind tasks entailed two left hand responses, and the movie tasks had no 

overt response. We then used a feature-based approach to identify movement-related activation patterns. 

The motor feature model included the number of left and right hand responses for each task as measured 

in the scanning sessions, and the mean number of saccadic eye movements, measured in the final 
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training session outside of the scanner. Using regularized regression (see methods), we could estimate 

the activation across tasks attributable to motor involvement.  

Left and right hand movements were associated with activation increases in the two hand motor 

areas of the cerebellum (Fig 1c), the anterior hand region located on the boundary of lobules V and VI, 

and the inferior region in lobules VIIIb11. Saccadic eye movements elicited activation in the posterior 

vermis (especially vermis VI), consistent with the location of the oculomotor vermis in the macaque 

monkey12. Compared to previous contrast-based human fMRI studies13, which have yielded relatively 

inconsistent results, our feature-based mapping approach resulted in an extraordinarily clear localization 

of eye-movement activation to the oculomotor vermis. While these results mainly confirm the well-

known functional localization within the cerebellum for movement, they demonstrate that a broad task-

based approach without tightly matched control conditions provides a powerful means of revealing 

functional organization. 

Multi-domain task battery elicits varied activation patterns across the cerebellum  

We then aimed to explore activation patterns invoked by the task conditions that could not be explained 

by the basic motor features. Overall, our task sets were able to elicit strong and distinguishable patterns 

of activation (Fig. 1d; see Fig S1 for the full set of group maps) across the cerebellar cortex. To 

determine the reliability of the activation patterns, we calculated the correlation of the individual, 

unsmoothed task-activation profiles for each voxel across the two sessions of each set. On average, these 

task activation profiles were reliable (set A: r=.43, CI: .39-.46; set B: r=.42, CI: .37-.46; see Fig S3 for 

individual participant maps). The resulting voxel-wise reliability map (Fig 1e) confirmed that this was 

the case for the entire cerebellar cortex, with the exception of lobules I-IV. These lobules are associated 

with foot movements11 and postural responses14, features that are absent in our task sets.  

Qualitatively, the activation patterns elicited by our task sets replicated numerous results 

obtained in previous neuroimaging studies that had focused on a single task domain. For example, 

highly right-lateralized activation throughout Crus I, Crus II, and VIIb was observed with the verb 

generation task8. Similarly, the verbal and picture N-Back tasks activated two distinct lateral regions of 

lobules VII, in agreement with previous working memory studies10.  

The task-activation maps also demonstrated some new insights, which have not been (or not as 

clearly) reported in the previous literature. The rest condition (contrasted against the mean of all the 

other conditions) was associated with bilateral activation in a mid-hemispheric region in Crus I and II, 
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effectively forming the cerebellar component of the default-mode network5. Similar cerebellar regions 

were strongly activated during the theory of mind task10. The finger sequencing and visual search tasks 

led to strong activation in cerebellar hand and eye-movement related areas, respectively. Given that 

these activation maps were corrected for motor features explainable by the sheer number of movements, 

this finding indicates that these areas are especially activated for complex movements or conditions with 

high attentional demands. Finally, the action observation task elicited activation in a distinct set of areas 

surrounding the motor areas of the cerebellum, especially in the posterior motor representation.  

The passive picture viewing tasks did not elicit much activation in the cerebellum. This is 

generally consistent with the notion that the cerebellum is not directly connected to inferior temporal 

regions involved in the recognition of visual scenes and objects. To quantify this observation, we tested 

the activation patterns of all possible task conditions against each other. While over 95% of the pairwise 

comparisons were significant (uncorrected p<.001 level), the most notable exceptions were pairs of the 

picture-viewing tasks. Notably, this included pairs in which the images differed in their emotional 

valence, such as viewing sad vs happy faces, or pleasant vs unpleasant scenes (Fig. S4). Contrary to 

previous reports15, we did not observe vermal activation related to emotional content. Given that the 

supposed location of this emotional-related activation is very close to the oculomotor vermis7, some of 

the previous results may be related to differences between conditions in eye movements or attentional 

allocation.  

Cerebellar lobules do not reflect functional subdivisions 

One way to summarize these activation patterns is to subdivide the cerebellum into functionally distinct 

regions. This approach, however, is only meaningful if there are stable functional subdivisions in the 

cerebellum that generalize across tasks. To address this fundamental question, we developed a new 

evaluation metric, which we refer to as the distance controlled boundary coefficient (DCBC). The metric 

is predicated on the idea that if a boundary divides two functionally heterogeneous regions, then any 

equidistant pair of voxels that lie within a region should have activation profiles that are more correlated 

with each other than two voxels that are separated by the boundary (Fig. 2a, see methods). Specifically, 

we calculated correlations between voxel pairs using a range of spatial bins (4 mm to 35 mm), and then 

used the difference between the mean correlation of within-region pairs and between-region pairs as our 

criterion. 



   8 

We first employed this evaluation method to determine whether lobular boundaries are predictive 

of functional differences in individual participants. To what degree do functional boundaries follow 

macroanatomical folding? The question is of high practical importance as the dominant parcellation 

used to interpret functional activations in the cerebellum is based on lobular regions-of-interest. 

Surprisingly, the correlation between voxels within a lobule was not much greater than the correlation 

between voxels that spanned a lobular boundary (Fig. 2b). The correlations, averaged over distances of 4 

mm to 35 mm, were r=0.28 (0.26 – 0.30) within-lobules and r=0.25 (0.05 – 0.46) between-lobules (95% 

confidence interval). While the difference was significant (t23= 4.703, p<.01), the size of the difference 

was extremely small (DCBC=0.03). Thus, lobular boundaries do not reflect strong functional 

subdivisions in the cerebellum.  

As well as providing a global evaluation criterion, the DCBC can also be used to evaluate the 

strength of individual boundaries (Fig. 2c). For example, the superior posterior fissure separating lobule 

VI from VII was the strongest lobular boundary (DCBC=.127), while the primary fissure, which serves 

as first principle subdivision of the cerebellum, was relatively weak (DCBC=.069). The boundary 

separating Crus I and Crus II did not predict any functional specialization (DCBC=0). In sum, a lobular 

parcellation poorly identifies functional regions within the cerebellar cortex. 

 

 

Figure 2. Distance-corrected boundary coefficient (DCBC). (a) Correlations between all pairs of voxels 

with the same distance were calculated and averaged depending on whether they were “within” or 

“between” regions. Voxel-pairs were then binned according to spatial distance (4-35mm in steps of 

5mm). (b) Correlation as a function of spatial distance for lobular boundaries. The DCBC is defined as 
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the difference in correlation (within-between) within each distance bin. (c) Strength of the boundaries 

for the lobular parcellation, with the thickness of the black lines indicating the DCBC value.  

MDTB parcellation uncovers strong functional boundaries  

We next asked whether the task-based parcellation would more clearly identify functional boundaries in 

the cerebellum.  While functional parcellations will invariably yield boundaries from a given task set, it 

cannot be assumed that these boundaries will generalize to new tasks. We first estimated a group-based 

parcellation using all of the MDTB data. Using semi-nonnegative matrix factorization16, we decomposed 

the N (tasks) x P (voxels) data matrix into a product of an N x Q (regions) matrix of task profiles and a 

Q x P matrix of voxel weights. The voxel weights, but not the task profiles, were constrained to be non-

negative.  A winner-take-all approach was adopted to assign each voxel to the region with the highest 

weight. The resulting parcellation comprised 10 regions (Fig. 3b) and contained functional regions 

related to motor areas for hand and saccadic eye movements. Parcellations containing fewer than 10 

regions did not adequately capture these three motor-related regions (Fig. 3c). It is noteworthy that most 

functionally-defined regions span multiple lobules and subdivide the lobules in the medial-to-lateral 

direction.  

Across participants, the overall DCBC was .144 (t23=24.154, p<1e-10), higher than the strongest 

lobular boundary. This evaluation is of course biased in favor of the MDTB parcellation, as training and 

evaluation data overlap. However, the overfitted criterion can still serve as an upper bound of how well 

the task-based parcellation would perform on a novel task set. For a more conservative estimate, we 

obtained the parcellation of all task conditions from set A, and evaluated the boundaries using the 

unique tasks from set B.  We repeated this out-of-sample generalization test in the other direction and 

averaged the two values. This evaluation underestimates the predictive power of the overall parcellation, 

as each parcellation is based on only half of the data of the overall parcellation. It therefore can serve as 

a lower bound for the performance of the parcellation. Using the same out-of-sample evaluation, the 

difference between the within and between correlations remained highly significant (t23=23.221, p<1e-

10; Fig 3a, dashed lines). The average DCBC was .122, not much smaller than the one obtained without 

cross-validation. The true performance of our full parcellation on a novel task set will likely lie between 

these two bounds. 

The form of a parcellation depends on the number of regions that are assumed. We also derived a 

7-region (Fig 3c) and a 17-region parcellation (Fig 3d). While there were some marked differences in 
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the functional subdivisions, all of the parcellations included the same strong boundaries in the medial-to-

lateral direction; for example, the purple region in Fig 3b-d spanning Crus I and II remains relatively 

invariant in all three parcellations. The cross-validated DCBC estimate was .122 for both the 7- and 10-

region parcellations (Fig. 3e), while the DCBC for the 17-region parcellation was lower (DCBC=.114, 

p<.05 in paired comparisons with the average value of the 7-region and 10-region parcellations). The 

lower value with the more fine-grained parcellation is due to the inclusion of additional boundaries that 

are relatively weak. For example, the orange region in the 10-region parcellation (Fig. 3b) is subdivided 

into two regions in the 17-region parcellation (Fig. 3d).   

The parcellations described above were based on group data; it is important to consider the 

variability in functional organization across individuals.  To quantify inter-subject variability, we 

compared the correlation between the task-activation maps across participants to the within-subject 

reliability across the two sessions for each set (Fig. 3f). Overall, ~36% of the pattern variance was 

shared between individuals, whereas ~59% reflected idiosyncratic patterns. A spatial-frequency 

decomposition of the patterns (see methods) revealed that commonalities across participants were 

restricted to the low spatial frequencies (< 1 cycle/cm; activations of more than 5mm in size), while the 

fine-grained patterns were purely idiosyncratic to the participant.   

These results raise the possibility that an individual parcellation might better predict functional 

boundaries for that individual, even when tested with out-of-sample generalization. The lower bound of 

the individual parcellation slightly outperformed the lower bound of the group parcellation in predicting 

functional boundaries on that same individual (Fig 3g). Even though the group parcellation does not 

capture individual functional variability, it benefits from being derived from a larger data set, reducing 

the influence of noise. 

In summary, using the MDTB data, we were able for the first time to quantitatively demonstrate 

the existence of distinct functional regions in the human cerebellum. Our results clearly advocate the 

adoption of a functional parcellation, to replace lobular subdivisions as a tool to summarize functional 

cerebellar data.   
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Figure 3. A rich task-based parcellation reveals functional boundaries in the cerebellar cortex. (a) 

Correlations for “within” (red) and “between” (black) voxel-pairs for the task-based parcellation (10 

regions). Solid lines indicate the values for the full parcellation; the dashed lines are the cross-validated 

estimates for a parcellation derived from only one task set. (b-d) Task-based parcellations for 10, 7, and 

17 regions, respectively. The DCBC for each boundary is visualized by the thickness of the black lines. 

(e) DCBC as a function of the spatial distance for the lower bound of the three task-based parcellations 

(colored lines) and lobular parcellation (black line). (f) Within-subject (black) and between-subject 

(red) reliability of activation patterns overall, and across different spatial frequencies. (g) DCBC as a 

function of voxel distance for the 10-region group parcellation (red) and average of the 10-region 

individual parcellations (black). Solid lines indicate the fit to all tasks and dashed lines indicate the 

cross-validated estimates of the prediction performance for novel tasks.  
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Task-free parcellations identify overlapping, but weaker boundaries 

In prior work, the correlational structure of task-free (or “resting state”) fMRI data has been leveraged to 

derive various parcellations of the cerebellum, containing 75, 106, or 175 regions (Fig 4a-c). These 

parcellations are only moderately consistent with each other (Fig 4f), with rand indices (0 = no 

communality; 1 = perfect match) of .25-.43. When these task-free parcellations were compared to our 

MDTB 10-region parcellation, the average rand index was .16.  

How well were these task-free parcellations able to predict functional boundaries in task-based 

data? For all task-free parcellations, the within-region correlations were significantly higher than the 

between-region correlations (Fig S5, t23 > 12.929, p<1e-10).  The average DCBC for the 7, 10, and 17-

region parcellations was .109, .105, .096, respectively, substantially higher than the lobular parcellation 

(t23 = 16.388, p<1e-10; Fig 4g). This indicates that all task-free parcellations are able to predict functional 

boundaries to some degree. However, the average task-free DCBC was significantly lower than the 

“lower bound” for our MDTB 10-region parcellation, t23 = 3.952, p=.00063. This difference was 

especially pronounced for voxel pairs <10mm distance, indicating that the task-based parcellation was 

superior in determining the finer spatial details of the functional organization.   

The Human Connectome Project (HCP) contains functional data for seven tasks17 (Fig 4 d, e), 

providing an alternative task-based data-set to derive functional parcellations of the cerebellum. To 

compare with the MDTB parcellation, we derived 10- and 17-region parcellations of the cerebellum 

from these data (see methods). The average DCBC for the HCP task-based parcellations was 

significantly lower than the average of the task-free parcellations (t23 = 7.13, p<1e-10; Fig 4g) and the 

lower bound of the MDTB parcellation (t23 = 10.69, p<1e-10), likely due to the restricted number of tasks 

and lack of a common baseline. Together, these findings demonstrate that a) correlations derived from 

task-free fMRI can be used to predict the structure of task-based activations18, and that b) parcellations 

based on a rich task set can provide a more powerful way of predicting functional boundaries for novel 

tasks sets.  
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Figure 4. Comparison of task-based and task-free parcellations of the cerebellum. (a-e) Using data 

from the HCP17, three parcellations based on task-free data with 7 and 17 regions5 and 10 regions6, and 

two parcellations on the task-based data with 10 and 17 regions. Thickness of the black lines indicates 

the DCBC for the corresponding boundary. (f) Parcellation similarity as measured using the rand index. 

(g) DCBC for different spatial distances for lobular (black), task-free (dark-light blue) and task-based 

(green) parcellations.  

Representational task space of the cerebellum 

An important advantage of a task-based approach is that we can make inferences about the processes 

that activate the cerebellar cortex. As a first step, we used a data-driven approach to visualize the 

representational space defined by the relative similarities of the activation patterns for different tasks. 

The axes of this space correspond to the latent factors that underlie different activation patterns in the 

cerebellum. The construction of the representational space is made possible by the fact that the tasks 
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were measured relative to the same baseline in the same imaging run. This allowed us to obtain a direct, 

cross-validated measure of the dissimilarity of the activation patterns.  

Figure 5a provides one view of the resultant representational space, in which each task-evoked 

activation pattern is projected into a three-dimensional space. Note that the real representational space 

has higher dimensionality. Using cross-validation, we estimated that the best description of the data for 

each individual was achieved using 9.3 (+-0.69) dimensions19. As a visual reference, each task condition 

was colored with the cerebellar region onto which it loaded most strongly. This representation revealed 

distinct clusters of tasks. For example, the different working memory tasks (verbal and picture N-Back 

and spatial map) showed relatively similar activation patterns with especially high activation in region 3. 

Tasks that involved mentalizing (e.g., motor imagery and spatial imagery) clustered together, with high 

activation in region 1. The representation also revealed that verb generation and action observation 

elicited activation patterns that were very distinct from the other tasks.  

Characterizing activation by cognitive features 

While a data-driven approach allows us to visualize the overall task space, the latent dimensions of this 

space are not easily interpretable. An alternative way to characterize the task space is to describe it using 

predefined and non-orthogonal features, each of which corresponds to a direction in task space 

associated with an activation pattern20. Note that we already successfully applied this approach when 

characterizing the activation patterns elicited by motor features (Fig. 1c).  

Motor features could be directly operationalized as the number of finger and eye movements. To 

extend this approach, we needed to describe each task condition in terms of its underlying cognitive 

features. To this end, we turned to Cognitive Atlas, an online cognitive ontology21, that summarizes the 

current consensus in cognitive science of the processes associated with a large array of tasks. To 

construct a feature space, each of the task conditions was rated on each of the cognitive concepts (see 

methods). We then estimated feature weights for each region using non-negative regression. For 

visualization purposes, we depicted the top three feature weights for each region (Fig. 5b).  

The dominant features describing the three motor regions (regions 7, 9, 10) were the 

corresponding motor features (hand and saccadic eye movements, respectively). The posterior 

associative motor region (region 8) was driven predominantly by “action observation”. Beyond these 

regions, the features most descriptive of the activation profiles captured a range of cognitive processes.  

Features related to working memory (e.g., visual working memory, active retrieval) were associated 
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with region 6, which encompassed bilateral patches in Crus I/II, hemispheric regions with strong task-

free correlations to prefrontal cortex. Another bilateral region encompassed the most lateral hemispheric 

regions of Crus I/II, associated with autobiographical recall (region 1). Regions 5 and 3 in the mid-

hemispheric aspects of Crus I/II, lateralized to the left and right cerebellar hemispheres respectively, 

were associated with attention-related features such as divided attention (region 5) and active 

maintenance (region 3). Medial to these regions on both hemispheres were regions 4 and 2, with features 

associated with either narrative (region 4) or semantic knowledge (region 2) aspects of language 

comprehension.  

 

 

Figure 5. Functional associates of the 10 regions identified in the group MDTB parcellation. (a) 

Similarity between task-evoked activation patterns, projected into a three-dimensional space. The three 

axes are the 3 pattern components that best distinguish between all task-activation maps. Each task was 

colored to indicate the functional region in which the task activation was highest. Tasks that did not 
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elicit clear activation in any region are shown in gray. (b) Cognitive descriptors for the task-based 

parcellation. Three features that best characterize each region are listed. Font size indicates the 

strength of these feature weights.  

Discussion  

Summary 

The aim of this study was to derive a comprehensive picture of the functional organization of the human 

cerebellum. To do this, a group of participants was scanned over the course of four fMRI sessions while 

performing a diverse battery composed of 26 unique tasks comprising 47 conditions. The task-evoked 

activation patterns were leveraged to derive a functional parcellation of the cerebellar cortex. We 

employed a new technique to quantitatively evaluate the boundaries of this parcellation in comparison to 

parcellations based on lobular structure and task-free fMRI data. The task-based parcellation 

successfully predicted functional boundaries when tested with a novel set of tasks, outperforming 

alternative parcellations.   

Parcellations of the cerebellar cortex  

The lobular architecture of the cerebellum has provided, both in neurophysiological and neuroimaging 

studies, the primary reference for defining sub-regions4,22. The macroanatomical folding into ten lobules 

is well conserved across species4 and under strong genetic control23. Nonetheless, our analysis shows that 

lobular boundaries constitute only very weak boundaries in terms of functional organization. Mapping 

studies employing electrophysiological24 methods have also highlighted that individual lobular 

boundaries do not clearly demarcate functional subdivisions. Here we confirm this finding globally for 

the human cerebellar cortex. The identified functional regions often spanned multiple lobules, with 

many of the boundaries traversing the cerebellar cortex along the parasagittal axis. The clear 

dissociation of anatomical and functional organization of the cerebellum, as revealed here, questions the 

value of summarizing functional and anatomical data in terms of lobular regions-of-interest.  

 As an alternative, we employed a diverse task battery to develop a parcellation that could 

comprehensively describe the functional organization of the cerebellar cortex. Critically, by using out-

of-sample generalization, this parcellation was able to predict functional boundaries on individual 

participants using data from novel tasks.  Further, parcellations derived on individual participants also 

successfully predicted functional boundaries using the same out-of-sample generalization approach. 
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These findings provide a compelling demonstration of discontinuities related to functional specialization 

across the cerebellar cortex.  Evidence from meta-analyses has suggested the existence of “motor”, 

“cognitive”, and “affective” regions of the cerebellum8. However, it has also been suggested that 

functional variation across the cerebellar cortex may be best understood in terms of smooth gradients7, 

without definable boundaries.  If this were the case, our DCBC measure, reflecting the ratio of the 

strength of within-region to between-region correlations, would have been near zero when tested on a 

novel task set. Instead, the values were positive, providing a rigorous demonstration of functional 

boundaries in the cerebellar cortex.  

The DCBC measure also provides a means to quantify the strength of each boundary.  For the 

MDTB parcellation, the strongest boundaries demarked the motor areas in lobules V and VI, and lobule 

VIII. Furthermore, lobule VII was subdivided into an intermediate region (regions 2 and 4) and a set of 

surrounding regions (regions 3, 5 and 6), consistent with a mirror-reflected organization across the 

anterior-posterior axis of the human cerebellum25,26.  

An open question is whether the boundaries defined through our task-based approach relate 

systematically to anatomical features of the cerebellum identified by molecular techniques24. 

Specifically, studies investigating Adolase-C (Zebrin) expression in Purkinje cells in the rodent27 and 

primate brain28 have revealed a series of parasagittal zones across the cerebellar cortex. Olivo-cerebellar 

projections respect this zonal organization, with single climbing fiber inputs synapsing onto Purkinje 

cells that lie within a zone27. The organization of Zebrin-zones remains to be established in the human 

cerebellar cortex; however, we suspect that the alignment with the organization observed here may not 

be very tight given that the cerebellar hemodynamic signal is primarily reflective of mossy fiber input29.  

Relative to climbing fibers, mossy fiber innervation patterns are likely to be patchier and more diffuse, 

potentially spanning multiple zonal regions30.  

 Boundaries identified from task-free fMRI data also were able to predict task-based 

discontinuities. This finding is in accord with similar analyses of the cerebral cortex, showing that task-

based activation patterns in the neocortex can be predicted to some degree by parcellations obtained 

from the spontaneous fluctuations in the fMRI signal during rest18.  However, our task-based parcellation 

outperformed alternative task-free parcellations6,31, along with task-based parcellations that we derived 

using data from the Human Connectome Project. While the MDTB parcellation was based on fewer 

participants than the other parcellations (24 vs. 1000), our data set entailed considerably longer scanning 

time/participant. One notable difference between the task-free parcellations and our MDTB parcellation 
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was that the latter distinguished between left and right hand movement regions in both the anterior and 

posterior lobes, whereas task-free parcellations lump these together. 

While our group-based map could predict functional boundaries in individual participants, the 

finer spatial details of the functional organization were idiosyncratic for each individual. This suggest 

that it may be advantageous to derive a separate parcellation for each individual. Our results, however, 

indicate that this may not be easy to achieve in practice. Even when using ~2 hours of data per 

participant, the predictive performance of the individual parcellations was similar to that obtained with 

the group parcellation; an advantage of the latter is that it was built on much more data. To achieve a 

more reliable individual parcellation, one would either require more data, or possibly combine 

individual and group-based data to derive an optimal parcellation.  

Novel insights about functional topography  

An additional advantage of a rich task-based approach for mapping the cerebellum is that we can not 

only identify functional boundaries, but we can also relate the activation patterns to the task 

requirements.  For many of the tasks in our battery, the activation patterns were in accord with the 

results obtained in previous fMRI studies that have examined a single or limited set of task domains. 

Examples here include the verbal and object working memory tasks, and the theory of mind task. 

 By using a rich task-based battery, we also identified functional regions that had not been 

observed or well-described in previous work.  A large and extended region of the cerebellar cortex was 

activated during action observation (region 8), surrounding the anterior, but to a much larger extent, 

posterior hand motor region.  Interestingly, the action observation region was also activated during 

complex movement as shown by the sequence production task. Taken together, these results suggest that 

anterior motor regions are more related to primary action execution, whereas posterior motor regions are 

more akin to a “premotor” area, perhaps associated more with action planning and action 

comprehension. Notably, lesions limited to the posterior cerebellum rarely lead to lasting symptoms of 

ataxia32.  

A second example comes from our motor feature model, which revealed a region around vermis 

VI that was strongly associated with saccadic eye movements.  This finding is consistent with 

neurophysiological data from non-human primates showing that this region is associated with 

oculomotor control12.  However, prior neuroimaging studies of the cerebellum have proven controversial 

with respect to this issue: Some studies have also linked this area with eye movements13, but other studies 
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have argued for a functional role of this region in more complex cognitive and/or affective processes7. 

Based on pilot work for this study and other unpublished observations, we have found it difficult to elicit 

any cerebellar activation with a simple saccadic eye movement task. In contrast, we observed robust 

activation in this area during the visual search task, even when accounting for the average number of 

saccades made during a 30 s block. Thus, our results offer a novel perspective of the functional role of 

this region, indicating that the hemodynamic signal here is driven by eye-movements performed under 

high attentional demands.   

The identification of this oculomotor region is also of interest given that prior studies have 

suggested that vermal activation in lobule VI is associated with emotional processing7. Conditions in our 

battery designed to engage emotional and affective processing (e.g., static images of unpleasant and 

pleasant scenes, sad faces) only weakly activated this region. Given the strong association of this region 

with eye movements, it may be that the prior activations were more related to differences in saccadic eye 

movements between conditions, rather than the emotional and affective processing demands of the tasks. 

Further support for this hypothesis comes from task-free fMRI studies showing that the oculomotor 

vermis is functionally connected to visual regions of the cerebral cortex5,7. An obvious challenge for 

future research is to explore how variation in eye movements, affective processing, and attentional 

demands interact in driving activation within this region.  

Conclusions 

We set out to explore, in a comprehensive manner, the functional organization of the human cerebellum. 

In general, our diverse task sets were successful in eliciting rich and heterogeneous patterns of activation 

across the extent of the cerebellar cortex. Our novel evaluation criterion provided, for the first time, a 

quantitative method to assess functionally defined boundaries, something that has been absent in prior 

studies, not only of the cerebellum, but also in mapping studies of the cerebral cortex.  Previous studies 

have delineated functional sub-regions in the cerebellar cortex, but lacked the task diversity to reveal a 

comprehensive map, as well as methods to quantify the strength of functional boundaries. The success 

of the out-of-sample generalization tests indicates that the functional regions were not specific to our 

particular task sets, but have the power to predict functional boundaries for new experiments.  

Additionally, task-based parcellations have the advantage over the task-free parcellations in that 

feature labels can be used as heuristics to provide a characterization of the cognitive processes 

associated with the different cerebellar regions. Specifically, the linkage of regions identified through 
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the parcellation and different cognitive features offers a process-based characterization of the human 

cerebellum.  For future research, the parcellation and the associated features can provide a useful guide 

in designing studies to test specific functional hypotheses, and to provide a reference for interpreting the 

results. The MDTB functional parcellation should also be of considerable utility for translational work, 

given the hypothesized involvement of cerebellar dysfunction in a range of neurological and psychiatric 

disorders33. A functionally-defined parcellation can help reveal dysfunction in specific cerebellar regions 

and cerebro-cerebellar circuits34, providing further insight into the extent of the functional domain of the 

cerebellum.  
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Methods  

Participants 

All participants gave informed consent under an experimental protocol approved by the Institutional 

Review Board at Western University. A total of 31 participants were scanned performing set A, and 26 

of this original cohort returned at a later date to perform set B (mean break between sessions = 166 days; 

SD=153 days, with half returning about a year later and the other half having sessions separated by 2-3 

weeks). The five participants who did not return for set B were not included in the analyses. Two 

additional participants were excluded from the analyses as they failed to complete all 32 scanning runs. 

Therefore, the final sample for the Multi-domain task dataset (MDTB) consisted of 24 healthy, right-

handed individuals (16 females, 8 males; mean age=23.8 years old, SD=2.6) with no self-reported 

history of neurological or psychiatric illness. Right-handedness was confirmed by a score greater than 

40 on the Edinburgh Handedness Inventory.  

Experimental tasks 

The experimental tasks included in set A of the MDTB were chosen to elicit heterogeneous activation 

patterns in the cerebellum.  We selected tasks to sample across a wide range of processing domains 

(cognitive, motor, affective, social), in many cases drawing on tasks that had previously been shown to 

engage the cerebellum. While recognizing that our selection process was somewhat arbitrary and that 

the tasks would differ on a number of different dimensions, our main criterion was to use a large battery 

that broadly sampled different functional domains. A full description of the tasks, along with the 

accompanying references is provided in Supplementary Table 1. 

The design of set B was guided by the results obtained with set A. Set b included 8 tasks that had 

been included in set A (“shared” tasks, e.g., i.e. theory of mind, finger sequence) and 9 “unique” tasks.  

The shared tasks provided a means to establish a common baseline across the two task sets.  Only tasks 

that were successful at eliciting activation in the cerebellar cortex in set A were included as shared tasks 

in set B. For example, the picture-based tasks did not elicit much activation and were omitted from set 

B. For some of the novel tasks, we selected conditions that are thought to assay similar processing 

domains as in task set A. For example, both sets included working memory tasks, but the tasks involved 

different stimulus dimensions (e.g., verbal working memory in set A and spatial mapping in set B). 

Other tasks (for example the naturalistic movie-viewing tasks) we novel in task set B.  
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Experimental design 

Each set consisted of 17 tasks. In every imaging run, each task was performed once for 35 s. The 35-s 

block was divided into a 5-s instruction period, where the task name (e.g., ‘Theory of Mind Task’), the 

response effector (‘Use your LEFT hand’) and the button-to-response assignment (‘1 = false belief. 2 = 

true belief’) were presented on the screen. This was followed by a 30-s period of continuous task 

performance. In general, novel stimuli were introduced across imaging runs to prevent participants from 

learning specific stimulus-response associations. The one exception was the motor imagery task in 

which participants were required to imagine playing a game of tennis. The number of trials within the 

30-s block varied from 1 (e.g., the movie viewing and mentalizing tasks) to 30 (e.g., Go-No-Go task). 

Most tasks involved 10-15 trials per block. The motivation for testing all tasks within a scanning run, as 

opposed to testing one task in each run, was to ensure a common baseline for all tasks, enabling 

between-task comparisons.  

 Three of the shared tasks (object N-Back, visual search, semantic retrieval) had a rapid, discrete 

trial structure (15/block), whereby each unique stimulus (picture, letter, noun) was presented for 1.6 s, 

with the response required to be completed within this window, followed by an inter-trial interval (ITI) 

of 400 ms.  Three of the shared tasks had a slower discrete trial structure: sequence motor task (trials=8; 

stim/resp duration=4.6 s; ITI=400 ms), theory of mind (trials=2; stim/resp = 9.6/4.6 s; ITI=400 ms) and 

action observation (trials=2; stim duration=14 s; ITI=1 s).  The remaining two shared tasks, spatial 

imagery and rest did not have a discrete trial structure (trials=1; duration=30 s).  

 Of the nine unique tasks in set A, six (interval timing, IAPS affective, IAPS emotional, verbal N-

back, motor imagery, Stroop, go/no-go, math, passive viewing) had the rapid discrete trial structure (1.6 

s/trial and 400 ms ITI). The go/no-go task also had a rapid discrete structure, but the rate was increased 

to maintain a high level of attention/arousal (trials=30; stim/resp duration=800 ms; ITI=200 ms). The 

math task was comprised of 10 trials (stim/resp duration=2.6 s; ITI=400 ms). The motor imagery task 

did not have a discrete trial structure (duration=30 s).   

 Of the nine unique tasks in set B, six had a discrete trial structure: The prediction, spatial map, 

and response alternatives tasks entailed 6 trials/block (stim/resp=4.8 s; ITI=200 ms), the mental rotation 

task 9 trials/block ( stim/resp duration=3 s; ITI=300 ms), the body motion task 10 trials/block ( stim/resp 

duration=3; ITI=0), and the CPRO task 4 trials/block (stim/resp duration=7.3 s; ITI=200 ms).  The three 
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movie-viewing tasks (landscape, romance, and nature) did not have a discrete trial structure 

(duration=30 s). 

Hand assignment across tasks 

For each task requiring responses, the responses were made with either the left, right, or both hands 

using four-key button boxes. Hand assignment was consistent for sets A and B for the shared tasks. For 

tasks requiring 2-choice discrimination, responses were made with the index or middle finger of the 

assigned hand while responses for tasks requiring 4-choice discrimination were made with the index and 

middle fingers of both hands. By including a motor feature model in our analysis (see below), we were 

able to account for the motor requirements across the tasks.  

Behavioral training 

For each task set, participants completed three days of training prior to the first scanning session. 

Training included all of the tasks with the exception of the rest condition and the three movies (set B). 

For each set, the three training sessions took place over the course of four to seven days (set A: mean 

number of days=5.2, SD=3.5; set B: mean number of days=4.4, SD=1.8).  

The first day was used to familiarize the participants with the requirements for each of the 17 

tasks.  The participants were instructed to carefully read the instructions. When ready, they initiated a 

35-s training block. The number of training blocks differed depending on the perceived level of 

difficulty of the task. For example, the 2AFC picture-based tasks (IAPS affective, IAPS emotional) were 

practiced for three blocks, while the Stroop task was practiced for seven blocks. During this training 

session, a run consisted of consecutive blocks of the same task. On-line feedback was provided for 

response-dependent tasks (green or red squares to indicate correct or incorrect responses, respectively). 

At the end of each run, an overall accuracy score was provided concerning performance on the tasks 

requiring a button response.   

On the second training day, the task switching aspect of the design was introduced.  Participants 

were given six runs of training, with each run composed of one block for each of 11 tasks that required 

manual responses.  As on day 1, the timing for the first four run was self-paced, with the participants 

allowed to read the instructions at their own pace prior to initiating the 30-s block.  For the final two 

practice runs, the instruction phase was limited to 5 s, thus introducing the protocol that would be used 

in the scanner.  Training on this day only included tasks that required overt responses.  On the third 
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training day, the participants practiced all 17 tasks in four 10-minute runs (35 s/task), emulating the 

protocol to be used in the scanner sessions. 

This training program ensured that participants were familiar with the requirements for each task 

and had considerable experience in switching between tasks.  In this manner, we sought to minimize the 

impact of learning during the scanning sessions.  On the third training day, performance was asymptotic, 

with the participants correct on at least 85% of the trials for all of the tasks (range = 85% to 98%; see 

Fig. S3).   

Eye tracking  

Eye-tracking data were recorded on the third training session to obtain an estimate of saccadic eye 

movements for each of the tasks. A algorithm implemented in the Eyelink toolbox35 identified saccadic 

eye movements as events in which eye velocity briefly exceeded a threshold of 30 deg/s. These data, 

tabulated as the mean number of eye movements per task, were included as a motor feature in the 

second-level feature model (see below).  Eye-tracking data from two participants in set A and three 

participants in set B were not obtained due to technical problems. However, since the eye-movement 

behavior was consistent across participants, we used group-based estimates.  

Scanning sessions 

Participants completed four scanning sessions in total, two with set A and two with set B.  The first 

scanning session for each set was conducted within a few days of the final training session (set A: 

mean=2.0 days, SD=1.6 days; set B: mean=2.2 days, SD=1.7) and the second scanning session was 

completed no more than 7 days after the first scanning session (set A: mean=3.1 days, SD=2.5; set B: 

mean=2.7 days, SD=2.3). Each scanning session consisted of eight imaging runs (10 min total 

duration/run). Each of the 17 tasks was presented once for 35 s in each imaging run, producing two final 

sets composed of 16 independent measurements per task. The task order was randomized across runs. 

To reduce order effects within each set, no two tasks were presented in the same order in two different 

runs. The order within each run, as well as the order of the runs, was kept constant for all of the 

participants.  This procedure was chosen to allow for cross-participant analyses on the time series level 

(results not presented here). As noted above, when possible, novel stimuli were used in each run to 

reduce the recall of specific stimulus-response associations.  
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Image acquisition 

All fMRI data were acquired on a 3T Siemens Prisma at the Centre for Functional and Metabolic 

Mapping at Western University. Whole-brain functional images were acquired using an EPI sequence 

with multi-band acceleration (factor 3, interleaved) with an in-plane acceleration (factor 2), developed at 

the Centre for Magnetic Resonance Research at the University of Minnesota. Imaging parameters were: 

TR=1 sec, FOV=20.8cm, phase encoding direction was P to A, acquiring 48 slices with in-plane 

resolution of 2.5 mm x 2.5 mm and 3 mm thickness. GRE field maps were also acquired for distortion 

correction of the EPI images due to B0 inhomogeneities (TR=.5 s, FOV=24 cm, 46 slices with in-plane 

resolution of 3 mm x 3 mm x 3 mm). We also acquired online physiological recordings of both heart and 

respiration during each functional run. No participants had to be excluded from either dataset due to 

excessive motion.  For anatomical localization and normalization, a 5-min high-resolution scan of the 

whole brain was acquired (MPRAGE, FOV=15.6 cm x 24 cm x 24 cm, at 1x1x1 mm voxel size). 

Image preprocessing  

Data preprocessing was carried out using tools from SPM 1236, Caret37, and SUIT22, as well as custom-

written scripts written in MATLAB 2015b. For all participants, the anatomical image was acquired in 

the first scanning session and reoriented to align with the Left-Inferior-Posterior (LPI) coordinate frame. 

Functional data were re-aligned for head motion within each session, and for different head positions 

across sessions using the 6-parameter rigid body transformation. The mean functional image was then 

co-registered to the anatomical image, and this transformation was applied to all functional images. No 

smoothing or anatomical normalization was applied to the functional images.  

General linear model 

A general linear model (GLM) was fit to the time series of each voxel separately for each imaging run. 

The 5-s instruction phase for all tasks was modeled using a single regressor, but not included in later 

analyses. Each task was modeled using a boxcar regressor of 30 s, or a combination of multiple 

regressors if the block contained sub-conditions. These regressors could be 2 boxcar regressors of 15 s 

each (e.g., N-back task where one sub-condition is 0-Back and the second is 2-Back), 3 boxcar 

regressors of 10 s each (e.g., visual search, display sizes of 4, 8, or 12), or 2 event-related regressors 

(e.g., Stroop task, where each trial is congruent or incongruent). The rest condition was not modeled 

explicitly, but rather used as an implicit baseline in the model.  
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The quality of the GLM in modeling the neural response was determined by measuring the 

consistency of the activation patterns in the cerebellum across runs. This measure indicated that it was 

advantageous to omit the traditional high-pass filtering operation before the linear model (default 

operation in SPM). Instead, we opted to rely on the high-dimensional temporal autocorrelation model 

(FAST option in SPM) to determine the optimal filtering, implemented in the GLM-estimation. The 

beta-weights from the first-level GLM were univariately pre-whitened by dividing them by the square 

root of the residual mean square image. To include rest as a task condition in all subsequent analyses, we 

added a zero as an estimate for the rest condition and then removed the mean for each voxel across all 

condition. As such, the beta-weights expressed the amount of activation elicited by each condition 

relative to the mean of all conditions.  

To combine activation estimates across the two tasks sets, the mean of the shared tasks was 

removed separately for each set. Both sets were then combined, retaining the repeated estimates for the 

shared task. This resulted in a total of 61 estimates (set A: 29; set B: 32) for the 47 unique conditions 

The activation patterns were re-centered by removing the overall mean across all 61 conditions.  

Cerebellar spatial normalization 

The spatially unbiased infratentorial template (SUIT) toolbox (v3.2) in SPM 12 was used to isolate the 

cerebellum from the rest of the brain and to provide a normalization to a spatially unbiased template of 

the cerebellum. The segmentation procedure was used to create probability maps of gray and white 

matter, allowing us to separate cerebellar and cortical tissue. The resulting cerebellar isolation mask was 

hand corrected to ensure that it did not contain any shared voxels between the superior cerebellum and 

the directly abutting cerebral cortical regions of the inferior temporal and occipital cortex.  

The probabilistic maps for the cerebellum were normalized into SUIT space using the 

diffeomorphic anatomical registration (DARTEL) algorithm38. This algorithm deforms the cerebellum to 

simultaneously fit the probability maps of cerebellar gray and white matter onto the SUIT atlas template. 

This non-linear deformation was applied to both the anatomical and functional data. The activation 

estimates (i.e., the beta weights), and residual mean-square images from the first-level GLM were 

resliced into SUIT space.  All images were masked with the cerebellar mask to avoid activation 

influences from the inferior occipital cortex. All data were visualized on a surface-based, flat-map 

representation of the cerebellar cortex in the SUIT toolbox. The flat-map representation allows the 

spatial extent of task-evoked activation patterns to be fully visualized.  
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Motor feature model 

Our primary goal was to study the task-evoked activation patterns in the cerebellum beyond the well-

known domain of motor function. Although not designed explicitly to measure motor-related activation, 

the 61 task conditions differed in the number of manual responses, as well as eye movements. To 

account for these motor-related activations, we generated a motor feature model (task conditions x 3 

motor features). For the hand movements, we entered the number of left and right hand presses for each 

task during the scanner runs (range 1 to 12, combining over the two hands). For eye movements, we 

used the group-averaged eye movement data from the third training day to estimate the number of 

saccades for each task condition. All motor features were encoded in terms of movements/s and z-

normalized.   

To extract and remove the motor-related activation across tasks, the three motor features were 

combined with an indicator matrix that had a 1 for each of the 61 task conditions, except for rest. To 

estimate and subsequently remove the influence of the motor features, we estimated the linear model 

with L2-norm regression (fixed lambda of .01) from the beta-estimates of each participant (task 

conditions x voxels x participant).  The average of all task conditions was used as a baseline measure 

and subtracted from the motor-corrected activation estimates. The activation estimates for the shared 

tasks were first averaged and then a group average was computed for the purposes of visualization on 

the cerebellar flat-map10.  

Reliability of activation patterns 

To determine intra-subject reliability across the entire cerebellar cortex, we calculated the correlation 

between the average activation estimates for the first and second session for each task set, separately for 

each participant. To obtain an overall reliability, we stacked the 29 (A) or 32 (B) activation estimates for 

all cerebellar voxels into a single vector and calculated the Pearson correlation between the two 

estimates. For Fig. 1e this analysis was also performed for each voxel separately. The group-averaged 

correlations was then visualized on the cerebellar surface.  

Spatial frequency of activation patterns 

To determine how much of the variance of the activation patterns was common to the group relative to 

how much was idiosyncratic to the individual participants, we calculated two correlations, one between 

task-activity maps between two sessions for the same participant (as for the reliability), and the second 

between sessions of different participants. Correlations were computed on all gray matter voxels in 
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SUIT space. To determine the spatial scale of these common activation patterns, we decomposed the 

volume image for each task condition into five spatial frequency bands ranging from 0 to 5 cycles/cm. 

This decomposition was done separately for each participant, study, session, and task condition. The 

within- and between subject correlations were then computed for each spatial frequency band.  

Evaluating functional boundaries 

We developed a novel method to evaluate functional boundaries from fMRI data.  The rationale of the 

method is that, if a boundary is dividing two functionally heterogeneous regions, then two voxels that lie 

within the same region should have more similar functional profiles than two voxels that are in different 

regions (Fig. 2a; Eq. 1). Because functional organization tends to be smooth, the correlation between 

two voxels will be higher for two adjacent voxels, and fall off as the spatial distance increases11. To 

control for distance, we calculated the activation pattern correlations for all pairs of voxels separated by 

a fixed Euclidean distance, using spatial bins ranging from 4 mm to 35 mm. To exclude spatial 

correlations that were driven by noise, we used a cross-validated correlation. Using ui,1 to represent the 

functional profile (zero-meaned) of voxel i from one session, and uj,2 the functional profile of voxel j 

from the other session, the correlation was calculated as:  
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,                          Equation 1 

where the sum was done on all voxel pairs i,j in the corresponding 5 mm bin, separating those that 

involved voxel pairs from the same region (within) and those in which the voxel pairs spanned the 

boundary (between) for each spatial bin. We excluded voxels where the term 𝒖1,23 𝒖1,4 was negative, as it 

indicated the absence of any reliable tuning across the two sessions. The difference between the within-

region correlation and the between-region correlation defined the Distance Controlled Boundary 

Coefficient (DCBC). A positive DCBC value indicates that voxel pairs originating from the same region 

are more functionally related than voxel pairs that lie across boundaries. The DCBC was calculated for 

each participant and spatial bin separately, and then averaged.  

The DCBC can serve not only as a global measure of a parcellation (averaging across the 

cerebellum and spatial bins), but also as a measure to evaluate the strength of individual boundaries. For 

the latter, we first identified boundaries using an edge-based connectivity scheme79. The strength of a 

given boundary is defined by the DCBC calculated only on the voxel pairs from the two regions that are 
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separated by that boundary. To visualize boundary strength, the thickness of the boundary on the flat-

map was based on its DCBC value.  

We applied this boundary evaluation procedure to task-based parcellations, as well as 

parcellations based on lobular boundaries or task-free fMRI data. The lobular parcellation was obtained 

from a probabilistic atlas of the human cerebellum22 that includes lobules I-IV, V, VI, Crus I, Crus II, 

VIIb, VIIIa, VIIIa, IX, and X.  One task-free parcellation was based on data archived as part of the 

Human Connectome Project (HCP), while the other two were based on a large 1000-person dataset 

collected at Harvard and Massachusetts General Hospital . The latter two were reported in Buckner et al. 

(2011)5, a 7-region coarse parcellation and 17-region fine parcellation while the former was based on a 

10-region parcellation from Spronk et al. (2018)6. In addition, two task-based parcellations (10- and 17-

region) were derived on a smaller task-set (7 tasks) on data archived as part of the Human Connectome 

Project.17 All parcellations were sampled into SUIT space and evaluated using our functional task-based 

data. 

Multi-domain task dataset (MDTB) parcellation 

To derive a parcellation with the data from our task battery, we used the activation profile averaged in 

SUIT volumetric space across participants. The parcellation was based only on data from voxels 

assigned to gray matter. As a clustering approach, we used semi-nonnegative matrix factorization39, 

which decomposes the N (tasks) x P (voxels) data matrix into a product of an N x Q (regions) matrix of 

task profiles and an Q x P matrix of voxel weights. The voxel weights, but not the task profiles, were 

constrained to be non-negative. In comparison to other decomposition methods, such as independent 

component analysis (ICA), this method has the advantage that voxels cannot be explained by an inverted 

or negative regional task profile.  This constraint is also reasonable given that, the main neural signal 

driving the BOLD response in the cerebellum, the mossy fiber input, is excitatory29. A winner-take-all 

approach was adopted to assign each voxel to the region with the highest weight. To ensure 

convergence, we started the decomposition with random initializations, and selected the iteration with 

the best reconstruction of the original data. We stopped when the current estimate of the best solution 

was obtained five times without being replaced by a better solution. The results from this winner-take-all 

approach were then graphically displayed on a flat-map of the cerebellum.  
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To allow for a direct comparison with existing task-free parcellations5,6, we used parcellations 

with 7, 10, and 17 regions. Parcellations involving regions within this range achieved similar 

reconstruction accuracy and quality of functional boundaries (see Fig. 3c, d).  

We also derived separate parcellations on each participant to determine whether boundaries 

could be predicted on the individual. An advantage of the individual parcellation is that the 

idiosyncrasies of within-subject variability is captured, which of course is missed at the group level. The 

disadvantage is that individual parcellations are derived on substantially less data than the group.  

 To evaluate the group and individual MDTB parcellations, we wanted to know how well 

functional boundaries could be predicted for each participant, using a completely novel set of tasks. 

Because we did not acquire data with a third, independent task set, we used the existing data to estimate 

lower and upper bounds of predictability. For the lower bound, we derived the parcellation using the 

data from set A and evaluated it with the data from set B, using the unique tasks only. This procedure 

was then repeated with the task sets reversed, and the results were averaged across the two cross-

validation folds. Note that the outcome of this analysis will likely result in a lower value than would be 

obtained with the final segmentation, as each parcellation is based on half of the available data.  As 

such, we use this estimate as an approximate lower bound. We also evaluated a parcellation derived 

from both sets A and B. We evaluated this parcellation as before, excluding the shared tasks from both 

task sets to make the estimate consistent with the lower-bound estimate. Because there is overlap 

between the data used for training and evaluation, the performance measure here is overfit and, 

therefore, was taken as an approximate upper bound.  In sum, we assume that true performance of the 

full parcellation, if applied to a completely new task set, would fall somewhere between these lower and 

upper bounds.  

The anatomical. task-free, and HCP task-based parcellations could be directly evaluated on the 

data from sets A and B since each parcellation was derived from independent data. For consistency, we 

excluded the data from the shared tasks in the evaluation set. 

Representational structure of task-related activation patterns 

Representational similarity analysis20 (RSA) was used to investigate the representational structure of 

task-related activation patterns from the MDTB dataset in the cerebellum. The dissimilarity between the 

motor-corrected activation patterns was measured for each pair of task conditions using the cross-

validated Mahalanobis distance, using the imaging runs as independent partitions. To calculate the 
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distances between conditions across the sets, we subtracted the mean of the shared task conditions from 

each imaging run first. Cross-validation ensures that the average (expected) value of the dissimilarity 

measure is zero if the two activation patterns only differ by noise. This allowed us to test for significant 

differences between activation patterns using a one-sample t-test against zero.   

Classical multidimensional scaling (MDS) was employed to visualize the distances between all 

possible pairs of task conditions. For the purposes of visualization, the pairwise distances for the shared 

tasks were averaged so that there were 47 (rather than 61) task conditions in the representational 

dissimilarity matrix (RDM). MDS projects the N-dimensional RDM into a lower-dimensional space so 

that distances from the higher space are preserved with as much integrity as possible. MDS was 

performed on the group-averaged RDM, and the first three dimensions were visualized in a 3-

dimensional space.  

Feature-based approach  

The power of our task-based approach in studying the cerebellum is that we can identify the 

involvement of each region across functional domains and different task variations. To summarize the 

task activation profiles for each region, we used a feature-based encoding method. The features included 

the three motor features (see above) and cognitive features, selected to capture the hypothetical mental 

processes involved in each task. To derive these features, we used an online cognitive ontology21, an atlas 

of tasks and the concepts associated with those tasks. Of the 815 concepts currently included in the atlas, 

46 were judged to provide an appropriate and sufficient characterization of the tasks in our battery, 

creating a feature matrix (47 task conditions x 46 features). For example, features such as “semantic 

knowledge” and “lexical processing” were associated with tasks such as verb generation and semantic 

prediction; “emotion recognition” was associated with the IAPS emotional processing task and the 

biological motion task.  As with the motor feature model, each feature was z-standardized and feature 

weights for each region were estimated with non-negative regression. For visualization purposes, the 

three highest weights for each region were computed.  

Data availability  

The MDTB data will be uploaded to a data-sharing repository (https://openneuro.org/) for download by 

interested members of the scientific community. These data include the raw behavioral and imaging data 

for the cerebellum, along with the functional parcellations and activation maps. Experimental code will 

be made available on a code-sharing website (https://github.com/).   
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Supplementary Figures 

 
Task Name Task Description Dataset  Conditions Hand 

Assignment 

Objects  Passive viewing, pictures of objects and a checkerboard pattern.  A  None 

Motor Imagery40 Imagine playing a game of tennis. A  None 

Stroop41 3AFC, indicating color of stimulus word (3 colors), comparing 
conditions in which color-word mapping is congruent or 
incongruent (Stroop task). 

A Congruent 
Incongruent 

Both 

Verbal Working 
Memory42 

2AFC, indicating if current stimulus in stream of letters matches 
letter displayed two items previously (2-back).  

A 2-Back 
0-Back 

Left 

Interval Timing43 2AFC, indicating if a tone is short (100ms) or long (175ms) A  Right 

Arithmetic44 2AFC, indicating if simple multiplication equations (e.g. 2x7=14) 
are correct or incorrect. For control task, participants view a 
series of four numbers and indicate presence/absence of target 
number (e.g., 1).  

A Math 
Digit Judgment 

Right 

IAPS affective45 2AFC, indicating if picture (scenes, animals, foods) is pleasant or 
unpleasant. 

A Pleasant 
Unpleasant 

Left 

IAPS emotion 2AFC, indicating if picture depicts sad or happy face.  A Happy 
Sad 

Right 

Go/No-Go46 Go-NoGo task with positive (Go) or negative (No Go) words.  A Go 
No Go 

Left 

Theory of Mind47 2AFC to indicate if short story contains true or false belief 
(Theory of Mind task) 

A & B  Left 

Rest  Passive viewing of fixation cross. A & B  None 

Object N-Back42 As above, with objects instead of letters (2-back). A & B 2-Back 
0-Back 

Right 

Verb Generation48 Verb generation task requiring covert responses to visually-
presented nouns, either repeating the stimulus (Read) or 
generating a verb associated with the noun (Generate). 

A & B Verb Generation 
Word Reading 

None 

Spatial Imagery40 Imagine walking from room to room in childhood home, with a 
cue specifying the path to be taken (e.g., “Imagine walking from 
the kitchen to the bedroom, stopping to look around at different 
rooms”). 

A & B  None 

Motor Sequence49 6-element sequence, either requiring one key press with each of 
six fingers (bimanual) or repetition of a single key press with one 
finger (unimanual left or right).  

A & B Finger Sequence 
Finger Simple 

Both 



   33 

Action 
Observation50 

Passive viewing of videos of knots being tied, learning the name 
of the knot (presented at top of screen) for a latter recall test. 

A & B Action 
Observation 
Video Knots 

None 

Visual Search51 2AFC, indicating if target stimulus (“L”) is present among 
distractors (“T”), with varying set size (4, 8, 12). 

A & B Easy (4)  
Medium (8) 
Hard (12) 

Left 

Spatial Map Memorize a spatial mapping of numbers (either, 1, 4, or 7) for 
subsequent recall 

B Easy (1) 
Medium (4) 
Hard (7) 

Both 

Mental Rotation52 Mentally rotate target object to determine whether it can be 
brought into alignment with baseline object. Difficulty is 
measured by angular disparity between target and baseline image. 
Stimuli were obtained from Ganis and Kievit (2015)53 

B Easy (0)  
Medium (50) 
Difficult (150) 

Right 

Biological Motion54 2AFC to identify intact point-light walkers (either happy or sad) 
or scrambled walkers (fast or slow). Stimuli obtained from Troje 
et al. (2017)54 

B Biological Motion 
Scrambled Motion 

Right 

Concrete Permuted 
Rules Operations 
(CPRO)55 

Apply task-rule set (logic, sensory, & motor rules) to two 
consecutively presented stimuli (rectangles: either red or blue, 
vertical or horizontal) 

B  Both 

Word Prediction56 2AFC task to indicate if five sequentially-presented words 
comprise a semantically meaningful sentence. Stimuli obtained 
from D’Mello et al. (2017)57 

B Prediction 
Violated  
Scrambled 

Left 

Response 
Alternatives58 

Execute a fast motor response to an imperative signal (white 
cross) that appears in one of 1, 2, or 4 primed positions 

B Easy (1) 
Medium (2)  
Hard (4) 

Both 

Nature Movie59 Passive viewing of a nature clip of kickboxing kangaroos, taken 
from “Planet Earth II: Islands” 

B  None 

Romance Movie59 Passive viewing of an emotional love story between two 
characters from the Pixar movie “Up” 

B  None 

Landscape Movie59 Passive viewing of an aesthetically-pleasing clip that depicts a 
diverse scenery, taken from Vimeo 

B  None 

 
Table S1. Task set description for all 26 unique tasks and 47 unique conditions. Tasks that require overt 
motor responses are executed either with the left, right, or both hands. 
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Figure S1. Unthresholded, group-averaged activation maps for the 47 unique task conditions displayed 

on a surface-based representation of the cerebellar cortex10. All activations are calculated relative to the 

mean activation across all conditions. Red-to-yellow colors indicate increases in activation and blue 

colors indicate decreases in activation. 
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Figure S2. Unthresholded, individual activation maps for 4 representative task conditions for 11 

representative participants. All activations are calculated relative to the mean activation across all 

conditions. Red-to-yellow colors indicate increases in activation and blue colors indicate decreases in 

activation. 
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Figure S3. Task performance (% accuracy) averaged across the four scanning sessions, each composed 

of four runs.  Average across all tasks is shown in black.  Poorest performance was on the spatial map 

task (red line) and best performance was on the IAPS emotion task (green line).  
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Figure S4. Representational dissimilarity matrix (RDM) for the group-averaged data for the unique 47 

task conditions. Shared tasks are averaged across the four scanning sessions. Dark blue represents low 

dissimilarity between pairwise task conditions while high distances (bright yellow) represent high 

dissimilarity between pairwise task conditions. Thresholded values are shown below the diagonal (dark 

blue cells indicating pairwise comparisons between task conditions were not significant (p<.001, e.g., 

pleasant and unpleasant scenes).  
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Figure S5. Voxel-to-voxel correlations within and between regions for the 7, 10, and 17 region 

parcellations derived from task-free, HCP task-based (7 tasks), and MDTB data sets. For the MDTB 

data, solid lines indicate the values for the full parcellation and the dashed lines are cross-validated 

estimates for a parcellation derived on one task set and evaluated with the other (averaging across the 

two directions of evaluation).  
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