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Abstract While resting- state fMRI studies have provided a broad picture of the connectivity 
between human neocortex and cerebellum, the degree of convergence of cortical inputs onto cere-
bellar circuits remains unknown. Does each cerebellar region receive input from a single cortical 
area or convergent inputs from multiple cortical areas? Here, we use task- based fMRI data to build 
a range of cortico- cerebellar connectivity models, each allowing for a different degree of conver-
gence. We compared these models by their ability to predict cerebellar activity patterns for novel 
Task Sets. Models that allow some degree of convergence provided the best predictions, arguing 
for convergence of multiple cortical inputs onto single cerebellar voxels. Importantly, the degree of 
convergence varied across the cerebellum with the highest convergence observed in areas linked to 
language, working memory, and social cognition. These findings suggest important differences in 
the way that functional subdivisions of the cerebellum support motor and cognitive function.

Editor's evaluation
This study presents the valuable finding that the human cerebellum receives highly convergent 
(rather than sparse) task- related connectivity from the cortex. A compelling case is made that this 
convergent connectivity supports a wide variety of cognitive functions, though it will be important 
for future work to fully verify the cortical- to- cerebellar directionality of the results. The work will be 
of broad interest to cognitive neuroscientists interested in the role of connectivity in cognition.

Introduction
The last 30  years has witnessed a paradigm shift with regard to cerebellar function, with broad 
recognition that this subcortical structure is engaged in many aspects of human cognition. Since the 
first report of cerebellar activation in a semantic retrieval task (Petersen et al., 1989), thousands of 
neuroimaging papers have reported cerebellar recruitment during a broad range of tasks that cannot 
be attributed to the motor demands of these tasks. Functional interpretations include hypotheses 
concerning how the cerebellum may facilitate attentional shifts (Allen et al., 1997), stimulus- response 
mapping (Bischoff- Grethe et al., 2002), higher order rule processing (Balsters et al., 2013), verbal 
working memory (Marvel and Desmond, 2010), language (Fiez, 2016), and social cognition (Van 
Overwalle et al., 2015). This body of work has produced functional maps of the cerebellum that 
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depict the association of particular cognitive processes with different subregions of the cerebellum 
(King et al., 2019).

Given the relative uniform cytoarchitecture of the cerebellar cortex, it is assumed that differences 
in function mainly arise from variation in the input to the cerebellum. Trans- synaptic tracing methods 
employed in non- human primates studies have revealed extensive reciprocal connections between 
many frontal and parietal areas and the cerebellum (Dum and Strick, 2003; Kelly and Strick, 2003). 
These studies have highlighted the closed- loop nature of these connections, with each (neo- )cortical 
region projecting to a specific cerebellar region, and receiving input from the same area (Strick et al., 
2009). In humans, resting state functional connectivity analyses have revealed a set of cerebellar 
networks, each one associated with a specific cortical network (Buckner et al., 2011; Ji et al., 2019; 
Marek et al., 2018).

An important unanswered question is whether each cerebellar region receives input from a 
restricted cortical region or whether it receives convergent input from multiple cortical regions. 
Providing an answer to this question has important implications for our understanding of cerebellar 
function. An architecture marked by a one- to- one relationship between cortical and cerebellar regions 
would suggest that the function of each cerebellar region is to fine- tune the dynamics in its cortical 
input. In contrast, a convergent architecture would suggest that subregions within the cerebellum 
integrate information across disparate cortical regions and may coordinate their interactions. Indeed, 
recent work in the rodent brain has suggested convergence of mossy fibers from diverse sources 
onto the same cerebellar region (Henschke and Pakan, 2020; Pisano et al., 2021), or even onto the 
same granule cells (Huang et al., 2013). Furthermore, the pattern of cortico- cerebellar convergence 
may vary across the cerebellar cortex, similar to how cortical areas show considerable variation in the 
degree to which they serve as points of convergence from other cortical regions (Bertolero et al., 
2015; Yeo et al., 2014; Yeo et al., 2015).

In the current study, we introduce a novel approach to study cortico- cerebellar connectivity. Using 
the data from a large battery of tasks, we derived models that could be used to predict the activity in 
each cerebellar voxel based on the activity pattern in the neocortex. While this approach allowed us to 
evaluate the degree of convergence of cortical inputs to the cerebellar cortex, we recognize that the 
model could also be evaluated in the opposite direction, namely, to predict activity in the neocortex 
based on cerebellar activity patterns. However, we believe that using the model to make directional 
predictions from neocortex to cerebellum is most appropriate for fMRI data. The BOLD signal in the 
cerebellar cortex overwhelmingly reflects cortical input (via the pons) with no measurable contribu-
tion from the Purkinje cells, the output neurons of the cerebellar cortex (Mathiesen et al., 2000; 
Thomsen et al., 2004; Alahmadi et al., 2016; Alahmadi et al., 2015; Mapelli et al., 2017; Gagliano 
et al., 2022). In contrast, the neocortical BOLD signal reflects many sources including inputs from 
other cortical regions, local activity (input and output), as well as ascending input. While the latter will 
include cerebellar input via the thalamus, this source is likely to make a relatively small contribution to 
the overall BOLD response in the neocortex. As such, the relationship between neocortical and cere-
bellar BOLD signals will be most informative in evaluating cortico- cerebellar connectivity.

We trained multiple models of neocortical- cerebellar connectivity on a fMRI data set obtained 
while human participants completed a large task battery that was designed to engage cognitive 
processes across a broad range of functional domains (e.g. visual cognition, memory, attention, cogni-
tive control). The models varied in terms of the degree of convergence of cortical inputs onto each 
cerebellar area. To evaluate the models in a cross- validated fashion, we examined how well each 
model predicted cerebellar data obtained from different tasks and/or different participants, using 
only the corresponding neocortical data. These analyses reveal a novel picture of cortico- cerebellar 
connectivity, one in which the degree of convergence was higher in cerebellar regions associated with 
more complex cognitive functions.

Results
Overview
We compared three models of cortico- cerebellar connectivity by using a region- to- region predictive 
modeling approach (Cole et al., 2016; Mell et al., 2021). For each model, the task- evoked activity 
in each cerebellar voxel was predicted as a linear combination of task- evoked activity patterns across 
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the entire neocortex (Figure 1). As a model of sparse connectivity, we used a Winner- Take- All (WTA) 
model which imposes the strong constraint that only a single cortical region is used to predict the 
activity in each cerebellar voxel. The other two models allowed for some degree of convergence. 
Models estimated with Lasso Regression (L1 regularization) find sparse solutions, minimizing the 
number of cortical inputs by setting to zero those weights that make a negligible contribution to the 
predicted activity. Models estimated with Ridge Regression (L2 regularization) allow for a wide distri-
bution of inputs, keeping each weight as small as possible. For model input, we used a set of cortical 
parcellations that varied in terms of their level of granularity. We trained the models on cortical and 
cerebellar fMRI data obtained from 24 participants who performed a task battery with 29 task condi-
tions (Task Set A, Figure 1A). These were acquired over two sessions on separate days, with the tasks 
identical across sessions. These data were used to estimate the connectivity weights separately for 
each model and participant (see Methods).

To compare the models, we tested their prediction performance on two independent datasets. 
First, we used data from the same 24 participants when tested in two different sessions (Task Set B) 
that included 18 novel conditions and 14 conditions repeated from Task Set A (Figure 1B). To predict 
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Figure 1. Connectivity model training and evaluation. (A) Models were trained on Task Set A (session 1 and 2) of the multi- domain task battery (MDTB; 
King et al., 2019). Model hyperparameters were tuned using fourfold cross validation. Three types of models were used (WTA, Lasso, Ridge), each with 
7 cortical parcellations of different granularity. (B) Models were tested on an independent Task Set B (sessions 3 and 4), which included both novel and 
common tasks. Models had to predict the cerebellar activity solely from cortical activity patterns. To avoid the influence of shared noise correlations 
across cortex and cerebellum, the models were trained and tested by using cortical and cerebellar activity patterns from different sessions within each 
task set (see Methods). (C) As a test of generalization, the models were used to predict cerebellar activity from cortical data obtained from a separate 
experiment (King et al., unpublished data).
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the cerebellar activity patterns, we used the observed cortical activity patterns from Task Set B and the 
estimated connectivity weights () from Task Set A for each participant. Note that because the model 
predictions relied on a single set of connectivity weights across all tasks, the input is based only on 
the cortical activity patterns without reference to any features of the tasks themselves. Second, we 
also tested how the models would generalize when tested with data from a new group of participants 
tested on a set of novel tasks (Figure 1C).

The use of separate training and evaluation datasets allowed us to determine the best task- general 
model of cortico- cerebellar connectivity without overfitting the data. To validate that this approach 
enabled us to distinguish between different forms of cortico- cerebellar connectivity, we conducted a 
range of model recovery simulations (see Methods for details). Using the measured cortical activity 
for each participant, we generated artificial sets of cerebellar data imposing either a one- to- one 
or a many- to- one mapping. Following the procedure used with the real data, we trained the three 
models on Task Set A and tested them on Task Set B. The simulations (Figure 2—figure supple-
ment 1) showed that the WTA performed best if each cerebellar voxel was connected to only one 
cortical parcel, whereas ridge regression performed better if there was substantial convergence, with 
Lasso performing at an intermediate level. Thus, despite the presence of some degree of collinearity 
between the cortical parcels, these simulations demonstrate that our modeling approach is able to 
distinguish between different forms of connectivity.

Cortico-cerebellar connectivity is best captured by models with 
convergence
We first compared the different models, asking how well they predicted activity patterns obtained 
when the same participants were tested on Task Set B (Figure 2A). Models allowing for some degree 
of convergence outperformed the WTA model, and this advantage was observed across all levels 
of cortical granularity. Indeed, the prediction performance for the Ridge, Lasso, and WTA models 
was relatively independent of granularity. Averaged across all levels of granularity, the Ridge models 
outperformed the WTA models (F1,23 = 47.122, p<0.001). Post- hoc tests revealed that this advantage 
for the Ridge model was consistent across all levels of granularity, starting with a parcellation of 80 
regions (t23=5.172, p<0.001). We also found a significant difference in predictive accuracy between 
the Ridge and Lasso model (F1,23 = 15.055, p<0.001). Post- hoc tests showed that there was no signif-
icant difference in predictive accuracy at the lowest level of granularity (t23=1.279, p=0.213), whereas 
the difference was significant for the finer parcellations (all t23 >10.937, p<0.001).

The mean predictive accuracy of the Lasso and Ridge models was 0.257 (Figure 2A). There are two 
issues of note here. First, the models predicted activity of individual voxels, without any smoothing 
across cerebellar voxels. Thus, the upper bound for the predictive accuracy is limited by the reliability 
of the cerebellar test data. The correlation of the measured cerebellar activity patterns across the two 
sessions of Task Set B was, on average, r=0.51 (SD = 0.102). Reliability was fairly consistent across the 
cerebellum (Figure 2C), with some decreases in lobules I- IV. This dropoff likely reflects the fact that 
our battery only included hand and eye movements, and did not activate the lower body representa-
tion that is prominent in this area. Second, predictive accuracy is also limited by the reliability of the 
cortical data that was used to make the prediction. This is an especially limiting factor for WTA models 
that use fine granularity, since the predictions will be based on data obtained from a small cortical 
region.

Given these issues, we calculated a noise ceiling for each model, taking into account the reliability 
of the cerebellar data, the reliability of the cortical data, and the effect of granularity (see Methods, 
Figure 2—figure supplement 2). As an unbiased comparison of the model predictions, Figure 2B 
re- plots the predictive accuracy of each model normalized by its noise ceiling. As with the original 
analysis, the Ridge model significantly outperformed the WTA model (F1,23 = 16.49, p<0.01), and 
in post- hoc tests, the advantage was especially pronounced for finer parcellations (1848 regions; 
t23=5.073, p<0.001). Overall, the noise ceiling calculation showed that the Ridge model was able to 
predict approximately 45% of the systematic variance of the cerebellar activity patterns across tasks 
(average R2=0.672). While the predictive accuracy (Figure 2D) was best in anterior motor regions, it 
was reasonably high across the entire cerebellar surface.

The predicted and observed activity patterns for two exemplary tasks (Figure 2E) demonstrate the 
quality of these predictions at the group level. In both of these examples, (spatial working memory 
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and social cognition tasks), the connectivity model predicted the pattern of task activity with a high 
degree of fidelity. This is especially compelling for the spatial working memory task as the training set 
did not include a task with similar characteristics.

To ensure that our results were not biased by the use of an essentially arbitrary parcellation of the 
neocortex, we repeated the analysis using a range of published functional parcellations. For example, 
we used a 7- network cortical parcellation based on resting state fMRI data (Yeo et al., 2011) to train 
and test the three models. Here, too, the WTA model was inferior to the Ridge models (t23=2.956, 
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Figure 2. Performance of cortico- cerebellar connectivity models. (A) Predictive accuracy (Pearson correlation) of the Ridge, Lasso, and WTA regression 
models for the test data of Task Set B (B) Predictive accuracy normalized to the noise ceiling based on reliability of both cerebellar and cortical data 
(see Methods). Source data files are available for panels A and B (‘model_evaluation.csv’) (C) Voxelwise map of inter- session reliability of the test data. 
(D) Voxelwise map of predictive accuracy of the Ridge model (1848 parcels), normalized to the noise ceiling. (E) Observed and predicted activity for a 
novel task involving spatial working memory (Spatial Map) and a social cognition task (Theory of Mind). The spatial map task was not included in Task 
Set A. Error bars indicate 95% confidence intervals across participants (n=24).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data file contains model evaluation predictive accuracies for each of the three methods (Ridge, Lasso, Winner- Take- All), and for 
each parcellation (80- 1848).

Figure supplement 1. Model recovery simulations demonstrate the ability to identify different forms of cortico- cerebellar connectivity.

Figure supplement 2. Noise ceiling for Ridge model.

Figure supplement 3. Predictive accuracy for Ridge and WTA models using functional cortical parcellations.

Figure supplement 4. Hyper- parameter tuning for connectivity models.

Figure supplement 4—source data 1. Source data file contains predictive accuracies for each hyperparameter (- 2, 0, 2, 4, 6, 8, 10) of the Lasso model, 
and for each parcellation (80- 1848).

Figure supplement 4—source data 2. Source data file contains predictive accuracies for each hyperparameter (- 5, -4, -3, -2, -1) of the Ridge model, 
and for each parcellation (80- 1848).
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p<0.01), with no performance difference between Ridge and Lasso models (t23=–1.235, p=0.229). The 
same pattern held when we used other common functional parcellations of the neocortex (Figure 2—
figure supplement 3).

In summary, these results demonstrate that models which entail some degree of convergence from 
the neocortex to the cerebellum outperform a model in which cerebellar activity is based on input 
from a single cortical region. This conclusion holds across a broad range of cortical parcellations (Zhi 
et al., 2022).

Convergence of neocortical inputs varies across the cerebellum
To gain insight into where these cortical inputs came from, we visualized the cortical weights for each 
of the 10 functional regions of the cerebellum (Figure 3—animation 1). As expected given the crossed 
connectivity between M1 and lobules IV/V (Kelly and Strick, 2003; Krienen and Buckner, 2009; 
O’Reilly et al., 2010), the input to the hand regions of the cerebellum (regions 1 and 2) was centered 
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Figure 3. Cortical connectivity weight maps for the Ridge regression model with 1848 cortical parcels for each of 10 functional cerebellar regions. 
Each region is denoted by the most important functional term (King et al., 2019). Results are averaged across participants. Regression weights are in 
arbitrary units. See Figure 3—animation 1 for a gif of the connectivity weight maps, and see Figure 3—figure supplement 1 for the corresponding 
analysis using Lasso regression. Figure 3 has been adapted from Figure 5 from King et al., 2019.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure 3—animation 1. Animated cortico- cerebellar connectivity maps for the Ridge regression model.

Figure 3—animation 2. Animated cortico- cerebellar connectivity maps for the Lasso regression model.

Figure supplement 1. Cortical connectivity weight maps for the Lasso model with 1848 cortical regions.

https://doi.org/10.7554/eLife.81511
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around the contralateral primary sensorimotor cortex with some additional input from premotor and 
parietal cortex. Regions 3 and 4 are the other two cerebellar regions associated with motor function. 
Activity in region 3, the oculomotor vermis, is predicted by a bilateral set of cortical regions including 
the frontal eye fields (FEF), regions in the intraparietal sulcus, and extrastriate visual regions. Region 
4, an area strongly activated during action observation, is predicted by a bilateral network of regions 
including premotor cortex, supplementary motor cortex (SMA) and parietal cortex. Cerebellar regions 
5–10, the regions associated with more cognitive processes are predicted by a distributed set of 
cortical regions, with stronger input coming from the contralateral cortical hemisphere. For example, 
cerebellar region 5, a region restricted to the left cerebellum, receives much stronger input from the 
right cerebral hemisphere. In summary, these results suggest that most cerebellar regions are best 
predicted by multiple cortical regions, pointing to some degree of cortical- cerebellar convergence.

Visual inspection of the connectivity patterns (Figure 3) also highlights interregional variation of 
convergence. For example, inputs to hand motor regions MDTB (regions 1 and 2) arise from a rela-
tively small area of the neocortex, while inputs to regions in lobule VII (regions 3–10) come from a 
larger area. To quantify this observation, we tallied the number of non- zero regression weights for 
each cerebellar voxel as a measure of its input surface area. For this calculation, we used the Lasso 
model (80 cortical parcels) since it uses the minimal set of cortical areas necessary for predicting 
each cerebellar voxel. As the Lasso model forces the estimates of the other weights to zero, it allows 
for a quantification of input area without applying an arbitrary threshold. This calculation revealed 
a substantial variation in the degree of convergence across the cerebellar cortex (Figure 4A). For 
example, predicting the activity pattern of voxels within Crus I required inclusion of up to 10% of the 
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Figure 4. Cortico- cerebellar convergence measures using the Lasso model. (A) Map of the cerebellum showing 
percentage of cortical parcels with non- zero weights for the Lasso model (n=80 parcels). (B) Percentage of parcels 
with non- zero weights for functional subregions of the cerebellum. (C) Spherical dispersion of the connectivity 
weights on the cortical surface for each cerebellar voxel. (D) Average cortical dispersion for each functional 
subregion of the cerebellum. Error bars indicate standard error of the mean across participants. See Figure 4—
figure supplement 1 for the same results using Ridge regression. Error bars indicate 95% confidence intervals 
across participants (n=24).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cortico- cerebellar convergence measures using the Ridge model.

Figure supplement 2. Percentage of cortical surface across levels of granularity for Lasso regression model.

https://doi.org/10.7554/eLife.81511
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cortical surface whereas predicting the activity of 
voxels in the anterior lobe required less than 5% 
of the neocortex.

To statistically analyze these data, we opted to 
bin the cerebellar data using a functional 10- region 
parcellation of the cerebellum (King et al., 2019). 
This analysis confirmed that the size of the esti-
mated cortical input area differed across func-
tional regions (F9,207 = 7.244, p<0.001, Figure 4B). 
The lowest level of convergence was observed for 
regions 1 and 2, the anterior hand regions of the 
cerebellum. The highest levels of convergence 
were found in regions of the cerebellum associ-
ated with more cognitive functions (e.g. regions 
7 and 8, areas engaged during language compre-
hension). Noteworthy, this pattern holds for 
cortical parcellations of different levels of gran-
ularity (Figure 4—figure supplement 2), as well 
as for the thresholded coefficients from the Ridge 
regression models (Figure 4—figure supplement 
1A, B).

To assess whether these differences were 
driven by the collinearity of the cortical data, 
rather than by cortical- cerebellar connectivity, we 
ran a simulation (see Methods, model recovery 
simulations) in which we replaced the cerebellar data with the activity profile of the most similar 
cortical parcel. In this simulation, we did not find any differences in the area of estimated input across 
cerebellar regions (F9,207=1.762, p=0.076). Thus, the observed variation in convergence cannot be 
explained by the collinearity between different cortical input regions.

As an independent method to quantify convergence, we determined the spatial spread of the 
inputs across the cortical surface. For example, MDTB region 4, which is activated by action obser-
vation, is explained by a set of cortical regions with a relatively small surface area. Nonetheless these 
regions are spread widely across the cortex (e.g. fusiform gyrus, parietal and premotor regions). For 
a measure of dispersion, we calculated the spherical variance of the non- zero connectivity weights 
on an inflated model for each cerebral hemisphere (see Methods). This analysis revealed a similar 
pattern as seen in the surface area measure (Figure 4C, D F9,207=18.322, p<0.001). For example, the 
cortical inputs to the hand motor regions of the cerebellum were more concentrated, whereas the 
cortical inputs to lobule VII were more dispersed. Again, this pattern also holds for the Ridge models 
(Figure 4—figure supplement 1C, D).

In summary, we observed variation in the degree of cortico- cerebellar convergence across the 
cerebellar cortex. In particular, cerebellar motor areas such as the hand region in lobule V and VIII 
received relatively focal cortical input whereas cerebellar areas associated with cognitive processes 
(e.g. language, working memory) in lobule VII exhibited a higher degree of convergence.

Cortico-cerebellar connectivity model predicts new cerebellar data
A strong test of a model is how well it predicts novel data obtained in contexts distinct from that data 
used to develop the model. We conducted a generalization test using data from a separate exper-
iment involving novel tasks and new participants. The data came from a study in which participants 
were trained over multiple sessions on five tasks, selected to span a set of distinct cognitive domains.

All three model types (WTA, Lasso, Ridge) were evaluated, using the connectivity weights esti-
mated from Task Set A of the main study. Because the new study had different participants, we aver-
aged the weights for each model across the individuals in the training set. These group- averaged 
weights were then used to predict cerebellar activity patterns for the new data.

As shown in Figure 5, the connectivity models were generally successful in predicting cerebellar 
activity patterns for the new dataset. The overall pattern is quite similar to that seen in the initial 
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model tests (in which we had used data from different tasks) but involved training and test data from 
the same participants. Predictive accuracy was stable across levels of cortical granularity and the 
Ridge model provided the best overall predictive accuracy (r=0.657) and the WTA (r=0.352) the worst 
predictive accuracy. These results provide evidence that our cortico- cerebellar connectivity models 
capture important aspects of connectivity that are stable both across tasks and participants. More-
over, in accord with the earlier analyses based on predictions at the individual level, this generalization 
analysis again suggests that approximately 43% of the variation of cerebellar activity across tasks can 
be predicted by cortical activity alone.

Discussion
To date, models of connectivity between the human neocortex and cerebellum have been based on 
fMRI resting- state data (Buckner et al., 2011; Ji et al., 2019; Marek et al., 2018). This work demon-
strates that each region of the cerebellum receives input from a distinct set of cortical regions. For 
example, anterior and posterior cerebellar motor regions show correlated activity with contral- lateral 
sensorimotor cortex and non- motor or ‘cognitive’ cerebellar regions show correlated activity with 
specific parietal and frontal association areas.

Despite these important insights, previous work has not been designed to examine the patterns of 
convergence between the neocortex and cerebellum. Resting state connectivity maps are generally 
produced by assigning each cerebellar voxel to a single cortical network, a de facto winner- take- all 
model. In the present study, we quantified and compared models of cortico- cerebellar connectivity. 
The models differed in the degree of convergence of cortical inputs to each cerebellar region, ranging 
from an architecture constrained to a strict one- to- one mapping to architectures that allowed for 
distributed inputs. We evaluated these models in terms of how well they could predict cerebellar 
activity patterns on a novel Task Set. For nearly the entire cerebellum, models that allowed for some 
convergence predicted cerebellar activity better than the WTA model.

Convergence differs across cerebellar circuits
Importantly, the amount of convergence differed across the cerebellar cortex. Specifically, regions in 
anterior (lobules I- V) and inferior cerebellum (lobules VIII- X) were well predicted by a relatively small 
and concentrated area of the neocortex. In contrast, regions in lobule VI and especially lobule VII 
required input from a larger and spatially more dispersed set of cortical regions that were primarily 
located in association areas of prefrontal, parietal, and cingulate cortex. This finding underscores the 
heterogeneity of cortico- cerebellar connectivity with some cerebellar areas functioning in nearly a 1:1 
relationship with a single cortical region, whereas other areas integrate input from a more diverse set 
of cortical regions.

This variation bears some resemblance to a motor/cognitive gradient identified from resting state 
data (Guell et al., 2018). However, there are a few notable exceptions. First, based on our evaluation 
metrics, Region 3 (oculomotor vermis) was best explained by a large and relatively dispersed set of 
cortical regions, including intraparietal sulcus, the frontal eye fields (FEF), and extrastriate visual areas 
(Figure 4). Second, sub- regions of lobules IX, functionally associated with non- motor tasks (Buckner 
et al., 2011), are best explained by a relatively restricted set of cortical regions (Figure 4A and C). 
Thus, rather than following a functional distinction, it appears that regions with strong convergence 
are anatomically restricted to lobules VI and VII, two areas that have disproportionately increased in 
size during primate evolution (Balsters et al., 2010).

Variation in cortico- cerebellar connectivity has important implications for theories of cerebellar 
function (De Zeeuw et al., 2021; Diedrichsen et al., 2019; Henschke and Pakan, 2020). A cerebellar 
region that forms a closed- loop circuit with a single cortical region can only fine- tune the computa-
tional processes that are ongoing in its connected cortical region. In contrast, a cerebellar region that 
receives convergent input would be able to coordinate the interactions between dispersed cortical 
regions. Indeed, using a rodent model, Pisano et  al., 2021 have identified cerebellar areas that 
project back to multiple cortical areas, providing a substrate by which the cerebellum can influence 
neuronal dynamics not only in a focal cortical area but also interactions within networks of cortical 
areas (Pisano et al., 2021).
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Task-based vs. resting-state connectivity analyses
While our modeling approach could be applied to resting- state data, we opted to use the data from 
the multi- domain task battery for a variety of reasons. First, the breadth of tasks included in the battery 
assured that there would be reliable variation in activity across most of the neocortex and cerebellum, 
a necessary precondition for building a complete connectivity model. Second, the dataset allowed 
us to avoid biases that arise from correlated noise across abutting cortical and cerebellar regions 
(Buckner et al., 2011). We used the cortical activity patterns from one session to predict cerebellar 
activity patterns in a different session, relying on the fact that measurement noise is independent 
across sessions. Third, the MDTB data set allowed us to test the model across a broad set of tasks and 
mental states. While resting- state correlations are predictive of task- based activation patterns (King 
et al., 2019; Tavor et al., 2016; Zhi et al., 2022), resting in an fMRI scanner is arguably a relatively 
restricted situation. Our generalization test shows that the connectivity model can robustly predict 
activity patterns for new tasks and participants.

Directionality of the model
We opted in the present study to model the correlations between neocortical and cerebellar activity 
in a directional manner, making inferences from these data about connectivity from the neocortex 
to the cerebellum. We recognize that the two structures communicate with each other in a closed 
loop. Our decision to focus on cortico- cerebellar connectivity is based on studies of cerebellar blood 
flow in rodents. Increases in cerebellar blood flow, a major contributor to the BOLD signal, are the 
result of increases in mossy fiber activity, the primary input to the cerebellar cortex (Alahmadi et al., 
2015; Alahmadi et al., 2016; Gagliano et al., 2022; Mapelli et al., 2017; Mathiesen et al., 2000; 
Thomsen et al., 2004). In contrast, even a dramatic increase in the (complex or simple spike) firing 
rate of Purkinje cells does not produce a measurable change in blood flow within the cerebellar cortex 
(Thomsen et al., 2004; Thomsen et al., 2009). Thus, the cerebellar BOLD signal provides a relatively 
clear image of the cortical inputs to the cerebellum; importantly, this signal does not provide informa-
tion about the output of the cerebellar cortex (or cerebellum in general). In contrast, the BOLD signal 
in the neocortex reflects a combination of signals including local inputs/outputs across cortical layers, 
inputs from other cortical regions, and ascending inputs such as from the thalamus which will include 
input from the cerebellum. Given this asymmetry, a priori, we should expect that correlations in the 
fMRI signal between the neocortex and cerebellum will more strongly reflect the flow of information 
from the cortex to the cerebellum than the reverse.

Nonetheless, it is possible that some of the convergent inputs identified in our modeling work may 
be due to divergent projections from a single cerebellar region to multiple cortical regions. Indeed, 
recent viral tracing work has shown that some cerebellar areas project to the reticular nuclei in the 
thalamus, which in turn projects to a wide array of cortical regions (Kelly and Strick, 2003; Pisano 
et  al., 2021). A complete analysis of the entire cortico- cerebellar circuit will require the methods 
such as viral tracing techniques (Kelly and Strick, 2003; Pisano et al., 2021) or functional activation 
measures that target key nodes in the ascending pathway (deep cerebellar nuclei, thalamus).

Methodological limitations
Inter- region correlations of fMRI data can of course only provide indirect evidence of true functional 
connectivity. As such, it is important to consider methodological limitations that may influence the 
validity of our conclusions. From a statistical perspective, it was not clear, a priori, that we would have 
the power to distinguish between models of connectivity given that there can be substantial collin-
earity between different cortical regions. The model- recovery simulations (Figure 2—figure supple-
ment 1A, B) suggest that the present dataset was suitable to make such inferences, namely, activity 
patterns in different cortical regions were sufficiently de- correlated, likely reflecting the use of a broad 
task battery. Thus, we were able to recover the correct model used to simulate the data, regardless of 
whether we assumed one- to- one connectivity or different degrees of convergence.

However, the simulations also indicated that the approach (and data) was not sufficient to deter-
mine the absolute degree of convergence with high confidence. For example, the size of the cortical 
input area for each cerebellar region differed substantially between the Ridge and Lasso regression 
models (Figure 3 vs. Figure 3—figure supplement 1). Nonetheless, the two models result in similar 
predictive accuracy when using real data. Therefore, the true extent of the cortical input to a cerebellar 
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region likely lies somewhere between the extremes provided by the Ridge and Lasso models. Impor-
tantly, this ambiguity does not impact the core observation that the degree of convergence varies 
systematically across the cerebellar cortex. Whether using measures based on cortical surface area or 
dispersion, the general picture of variation in connectivity holds for both the Ridge and Lasso models, 
as well as when using cortical parcellations of different granularity. Thus, we are confident that the 
variation in convergence reflects a stable, method- independent characteristic of the cortico- cerebellar 
system.

Future directions
Our approach was designed to identify the best task- general model of cortico- cerebellar connectivity. 
The connectivity model was able to take cortical activity patterns to make fairly accurate predictions of 
cerebellar activity, even when the data were obtained in a completely separate experiment from that 
used to build the model. This finding suggests that a substantial proportion of the cortico- cerebellar 
communication can be described by fixed information flow (Cole et al., 2016); that is, each area of 
the cerebellum simply receives, independent of task, a copy of the neural activity occurring in the 
corresponding cortical areas.

However, the task- general model did not provide a perfect prediction of cerebellar activity. While 
these predictions may improve with more training data, we believe that there will likely be some 
systematic failures of the model. Such task- dependent deviations from the model prediction may 
offer important insights into cerebellar function, indicating that the cerebellum is more active than 
predicted by the cortical activity for some tasks and less for others. This pattern would suggest a 
‘gating’ of cortical input to the cerebellum, perhaps within the pontine nuclei, which is the main 
relay station of cortical inputs to the cerebellum. Rather than just transmitting cortical input to the 
cerebellar cortex, these nuclei may serve as an adaptive gate (Schwarz and Thier, 1999), amplifying 
or attenuating information as a function of the relative importance of cerebellar processing for the 
current task.

The models presented here allow us to detect such deviations by comparing the observed cere-
bellar activity for any task against the activity that is predicted by a task- invariant connectivity model. 
As such, the model provides a potent new tool to test hypotheses concerning cerebellar function.

Methods
Multi-domain task battery
To build models of cortico- cerebellar connectivity, we used the publicly available multi- domain task 
battery dataset (MDTB; King et al., 2019). The MDTB includes fMRI data from two independent Task 
Sets (A and B). Each set consists of 17 tasks, eight of which were common to both sets. The 26 unique 
tasks were designed to sample activity during a broad range of task domains including motor (e.g. 
sequence production), working memory (e.g. 2- back task), language (e.g. reading), social (e.g. theory 
of mind), cognitive control (no- go, Stroop), and emotion (e.g. facial expression; see Table S1 in King 
et al., 2019).

Twenty- four participants (16 females, 8 males, mean age = 23.8) were scanned during four sessions, 
with Task Set A employed in sessions 1 and 2 and Task Set B in sessions 3 and 4. Within a session, 
there were eight 10- min runs, with each run composed of 17 blocks of 35 s each. Each block involved 
a unique task and included an initial 5 s instruction period. Most tasks contained multiple conditions 
(i.e. different levels of difficulty), resulting in a total of 47 unique task conditions.

Image acquisition and preprocessing
All fMRI and MRI data were collected on a 3T Siemens Prisma located at the Center for Functional 
and Metabolic Mapping at Western University, Canada. The protocol used the following parameters: 
1 s repetition time; field- of- view measuring 20.8 cm; P- to- A phase encoding direction; 48 slices; 3 mm 
thickness; in- plane resolution 2.5×2.5 mm2. In order to localize and normalize the functional data, a 
high- resolution anatomical scan (T1- weighted MPRAGE, 1 mm isotropic resolution) of the whole brain 
was acquired during the first session.

Functional data were realigned for head motion artifacts within each session and different head 
positions across sessions using a six- parameter rigid body transformation. The mean functional image 

https://doi.org/10.7554/eLife.81511


 Research article Neuroscience

King, Shahshahani et al. eLife 2023;12:e81511. DOI: https://doi.org/10.7554/eLife.81511  12 of 20

was co- registered to the anatomical image and this rigid- body transformation was applied to all func-
tional images. No smoothing or group normalization was applied. SPM12 ( spm/doc/ spm12_ manual. 
pdf) and custom- written scripts in MATLAB were used to conduct data pre- processing.

General linear model (GLM)
To generate estimates of the activity related to each task condition, a general linear model (GLM) was 
fitted to the time series data of each voxel (ti). This was done separately for each imaging run and 
Task Set (A and B). The Design matrix for the GLM (Z1) of the GLM consisted of the regressors for the 
different conditions, plus separate regressors for each of the 5- s task- specific instructions period. For 
each Task Set, the beta weight for each task condition was averaged across the 8 runs within a session, 
resulting in the average activity estimate for that session ( b̄j ) for each voxel. The regressor for Task Set 
A resulted in 46 activity estimates (17 Instructions + 29 condition regressors) per session and Task Set 
B resulted in 49 activity estimates (17 instructions + 32 conditions regressors) per session.

Neocortex surface reconstruction
For each of the 24 participants, the anatomical surfaces of the cortical hemispheres were recon-
structed using the standard recon- all pipeline of the FreeSurfer package (Fischl, 2012; v. 5.0). The 
pipeline included brain extraction, generation of white and pial surfaces, inflation, and spherical align-
ment to the symmetric fsLR- 32k template (Van Essen et al., 2012). Individual surfaces were re- sam-
pled to this standard grid, resulting in surfaces with 32,492 vertices per hemisphere.

Spatial normalization of cerebellar data
The cerebellum was isolated and normalized to the high- resolution Spatially Unbiased Infratentorial 
Template of the cerebellum using the SUIT toolbox (Diedrichsen, 2006). This non- linear transforma-
tion was applied to both the anatomical and functional data. Task condition activity estimates (i.e. 
the beta weights) were resampled to a resolution of 3 mm isotropic and resliced into SUIT space. 
The cerebellar isolation mask was edited to remove voxels in the superior cerebellum that abutted 
voxels in the primary visual cortex. Functional images were masked with the cerebellar isolation mask 
resulting in activation signals that originate only from the cerebellar cortex. The cerebellar data were 
visualized using a surface- based representation of the cerebellar gray matter included in the SUIT 
toolbox (Diedrichsen and Zotow, 2015). This flat map is not intended to represent a true unfolding 
of the cerebellar cortex, but rather provides a convenient way to visualize volume- averaged cerebellar 
imaging data in a 2d representation.

Connectivity models
All of the task- based connectivity models were, in essence, multiple- regression models in which the 
data for each of cerebellar voxels (yi) was modeled as a linear combination of Q cortical parcels (X, 
see next section).

 yi = Xwi + ei  (1)

By combining the data (Y), the connectivity weights (W), and the measurement error (E) for each 
cerebellar voxels as columns into a single matrix, the entire model could be written as:

 Y = XW + E  (2)

The connectivity approach that we used relied only on task- evoked activity: model training and 
testing were done on the fitted time series rather than the full or residual time series (as done in many 
other connectivity approaches). We multiplied  Zj  from the first- level GLM with  the 46 (for training) or 
49 (for testing) activity estimates ( b̄j ) from the first- level GLM with the first- level design matrix (Z) to 
obtain the fitted time series the first- level design matrix for each session ( Z̄j ) from the first- level GLM 
with  tfittedi = Zb̄ + E   for each voxel (see General Linear Model). This was done for both the cortical and 
the cerebellar voxels.

In calculating the variances and covariances between cortical and cerebellar data (which are 
computed in the multiple regression models), this procedure reweighted the activity estimates to 
account for the fact that estimates for the instructions were based on 5 s of fMRI data, while estimates 
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for the conditions were based on 10–30 s of data. For example, the covariance between the cortical 
and cerebellar time series is:

 YTX = b̄XTZTZb̄Y   (3)

Therefore, if we had used the task- evoked activity estimates ( ̄b ) for cerebellar and cortical data, but 
reweighted the influence of each regressor by the diagonal of,  ZTZ   we would have obtained similar 
results. Because of the off- diagonal terms, this method also mitigates problems that may arise in 
event- related designs due to correlations between regressors (Mumford et al., 2012), one example 
is the estimation covariance between the instruction period and the task- related regressor that follows 
immediately afterwards.

We normalized the fitted time series by dividing them by the standard deviation of the residuals 
from the first- level GLM. This procedure emphasized voxels with large signal- to- noise ratios over 
voxels with low signal- to- noise ratios. The normalized time series were then averaged within all Q 
cortical parcels, resulting in a TxQ matrix (X) of cortical features. For the cerebellum, we modeled each 
of the p=6937 cerebellar voxels separately (SUIT atlas space with 3 mm resolution), resulting in a TxP 
data matrix (Y). The cortical data were further z- standardized (as in a partial correlation analysis) before 
entering them into regression models (see Model Estimation).

When estimating connectivity models, correlated fMRI noise across the cortex and cerebellum (e.g. 
head movement, physiological artifacts) can lead to the erroneous detection of connectivity between 
structures. This is especially problematic for the superior cerebellum and the directly abutting regions 
of the occipital and inferior temporal lobes. To negate the influence of any noise process that was 
uncorrelated with the tasks, we used a ‘crossed’ approach to train the models. Because there were 
two sessions (same tasks, different order) in each task set (A and B), we were able to predict the cere-
bellar fitted time series for the first session by the cortical time series from the second session, and 
vice- versa (see Figure 1).

 Z1b1X ∼ Z1b2Y   (4)

We did this separately for each task set, and given that the sequence of tasks was randomized 
across sessions, we could conclude from this approach that this prediction was based on task- related 
signal changes rather than fluctuations attributable to noise processes given that noise is not shared 
across scanning sessions.

Cortical parcels
We created a set of models that used different levels of granularity to subdivide the cortex. Specifi-
cally, each hemisphere was divided into a set of regular hexagonal parcels, using icosahedrons with 
42, 162, 362, 642, or 1002 parcels per hemisphere [see (Zhi et al., 2022) for details]. Parcels that 
were completely contained within the medial wall were excluded, resulting in 80, 304, 670, 1190, or 
1848 parcels combined for the left and right hemisphere. Activity within a parcel was averaged across 
voxels for each condition, defining the Q regressors for each model.

The regular icosahedron parcellations are arbitrary in the sense that they do not align to functional 
boundaries in the human neocortex more than expected by chance (Zhi et  al., 2022). We there-
fore also employed functionally- defined parcellations, repeating the main analyses using 12 different 
parcellations derived from resting state fMRI data (see Figure 2—figure supplement 3).

Model estimation
We used three regression methods to estimate the connectivity matrix  ̂W    at the individual participant 
level. In the core analyses, each of these methods was combined with the five arbitrary cortical parcel-
lations, resulting in 15 connectivity models. Each method was selected to favor a specific pattern 
of cortico- cerebellar connectivity. For the winner- take- all models, we assumed that the time series 
of each cerebellar voxel is explained by one and only one cortical region. To build this model, we 
simply chose the cortical region with the highest correlation with the cerebellar voxel in question. The 
connectivity weight corresponding to the rest of the cortical regions were set to 0.

The other two methods allowed for some degree of convergence in the cortical input to each 
cerebellar voxel. Lasso regression [least absolute shrinkage and selection operator (Tibshirani, 1996)], 
seeks to explain activity in each cerebellar voxel by a restricted set of cortical features. Specifically, 

https://doi.org/10.7554/eLife.81511


 Research article Neuroscience

King, Shahshahani et al. eLife 2023;12:e81511. DOI: https://doi.org/10.7554/eLife.81511  14 of 20

Lasso minimizes the squared- error, plus an additional penalty calculated as the sum of the absolute 
values (L1- norm) of the regression coefficients:

 
Ŵ = argmin

w
∥Y − XW∥2

2 + λ ∥W∥1  (5)

In contrast, Ridge regression penalizes large connectivity weights, attempting to find a broad set 
of cortical regions to explain each cerebellar voxel. Ridge regression minimizes the following loss 
function:

 
Ŵ = argmin

w
∥Y − XW∥2

2 + λ ∥W∥2
2  (6)

Both Lasso and Ridge models include a hyperparameter λ that must be tuned in model estimation. 
The value of these regularization parameters was determined using gridsearch with ourfold cross- 
validation on the training set. We divided the conditions of the training set into four non- overlapping 
subsets, reconstructed the time series using tasks from three of the four subsets and evaluated the 
model using the left- out subset. Figure 2—figure supplement 4 depicts the average predictive accu-
racy for the training set and the optimal value of λ for the Lasso and Ridge models.

Model testing
After model training with Task Set A, Task Set B was used as the test set. We applied the same 
procedure to construct the X and Y matrices. We then used the estimated weights for each model 
to generate predicted voxel- wise cerebellar activity patterns from the observed cortical time series. 
These predictions were generated at each level of granularity for each participant. Model perfor-
mance was measured by correlating predicted and observed cerebellar time series for each voxel. As 
with the procedure for model training, the cortical and cerebellar time series were crossed: Cortical 
time series from session 3 were used to predict cerebellar time series from session 4 and vice versa. 
Model predictions were calculated separately for each cerebellar voxel and visualized on voxelwise 
maps of the cerebellar cortex.

In sum, we evaluated 15 models in which the cortical parcels were based on an arbitrary icosahe-
dron, based on the combination of three regression methods and five levels of granularity. For the 12 
functionally- defined parcellations (Figure 2—figure supplement 3), we limited the evaluation to the 
WTA and Ridge models.

Noise ceiling
For each model evaluated in the current study, the noise ceiling quantifies the expected perfor-
mance of each model, under the assumption that the estimated weights reflect the true connectivity 
between the neocortex and cerebellum. When predicting the cerebellar activity patterns, our models 
are limited by two factors: Measurement noise associated with the cerebellar data and measurement 
noise associated with the cortical data.

To estimate these sources of noise, we used the fitted cerebellar time- series for the two sessions, 
assuming that each session’s data are composed of the true time series Y* plus noise ε:  Yi = Y∗ + ϵ . If 

 XiW    signifies the variance of the true time series, and  σ
2
ϵ   the variance of the noise, then the correla-

tion between the two sessions, i.e. the split- half reliability, is:

 
r
(
Y1, Y2

)
= σ2

Y
σ2

Y+σ2
ϵ

.
  

(7)

Similarly, the reliability of the prediction, even if we knew the true connectivity weights W, is limited 
by the noise on the cortical data X. The prediction  XiW   has noise variance,  σ

2
XW   which can be esti-

mated by calculating the split- half reliability across the two sessions:

 
r(X1W, X2W) = σ2

Y
σ2

Y+σ2
XW  

 
 

(8)

Thus, for the true model the expected correlation would be:
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rceil = r(XiW, Yi) = σ2

Y√
σ2

Y+σ2
XW

√
σ2

Y+σ2
ϵ

=
√

r(Y1, Y2)r(X1W, X2W)
  

(9)

Because we do not know the true weights, we use the estimated weights from each model to 
estimate the noise ceiling. Thus, the noise ceiling is model dependent, specifying what the correlation 
would be if the current model was the true model.

Cortico-cerebellar convergence
Two measures were used to assess the amount of convergence of cortical inputs to each cerebellar 
voxel. For the first measure, we calculated the percentage of the cortical surface contributing to 
the prediction in each cerebellar voxel. We used the estimated weights from the Lasso regression 
model with the best unnormalized performance (80 cortical parcels). We opted to focus on the Lasso 
model since it sets weights that make a negligible contribution to the predictions to zero, thus iden-
tifying the sparsest cortical input that explains the cerebellar data. To determine the likely input 
area, we determined the number of non- zero coefficients for each cerebellar voxel, and expressed 
this as a percentage of the cortical surface. We also repeated these analyses using Ridge regression 
(Figure 3—figure supplement 1). Because Ridge does not result in zero coefficients, we applied a 
threshold, counting the number of connectivity weights with a value one standard above the mean of 
the weight matrix.

For the second measure, we calculated the dispersion (spherical variance) of the input weights. 
Using the spherical representation of the cerebral hemispheres from FreeSurfer, we defined unit 
vectors, vi , pointing from the center of the sphere to the center of each of the cortical parcels. Each 
vector was then weighted by the cortico- cerebellar connectivity weight for that region wi. All negative 
connectivity weights were set to zero. The spherical variance for hemisphere h across all  Qh   parcels 
of this hemisphere was defined as:

 
varh = 1 −

�����
1

Qh

∑
Qh

wivi

�����
  

(10)

To obtain a composite measure, we averaged the variances for the two hemispheres, with each 
weighted by the size of the summed (non- negative) connectivity weights. For summary and statistical 
testing, we then averaged the size of the input area, as well as the dispersion, across cerebellar voxels 
within each of the 10 functionally defined MDTB regions.

Model recovery simulations
Even though we are using data from a broad task battery, there is substantial collinearity between the 
cortical parcels. This raises the questions of whether our approach can reliably distinguish between 
models of sparse and broad connectivity, and whether we can detect differences in convergence 
across regions in an unbiased fashion.

To validate our model- selection approach we conducted a series of model recovery simulations. 
Using the observed cortical activity patterns from each individual participant (with 80–1848 parcels), 
we simulated artificial cerebellar data for 2000 voxels. The artificial connectivity weights were chosen 
under two scenarios. To simulate one- to- one connectivity, each cerebellar voxel was connected to only 
one randomly chosen cortical parcel. To simulate broad convergence, the connectivity weights were 
drawn from a normal distribution with mean = 0, and a variance of 0.2. We then generated artificial 
data following Equation 2, both for the training data (using the cortical data from Task Set A) and for 
the testing data (using the cortical data from Task Set B). The measurement noise (E) was drawn from 
a normal distribution with mean = 0. The variance (0.25) was adjusted to approximate the signal- to- 
noise level observed in the empirical data. Model estimation (including hyperparameter- tuning) and 
model testing were then conducted following the procedure used for the empirical data (see above).

We also tested whether differences in cortical input area (Figure 4b) could be due to differences in 
collinearity in the associated cortical parcels. To address this question, we conducted a simulation with 
80 cortical parcels. For each MDTB region and participant, we simulated cerebellar data using one- 
to- one connectivity with the cortical parcel that had the highest average lasso- regression coefficient 
for that region and participant. Thus, we replaced the average activity profile in each cerebellar region 
by the profile of the most similar cortical parcel. We submitted these data to a Lasso regression with 
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log- lambda set to –3 and calculated the percentage of the cortical surface with non- zero connectivity 
weights in the same manner as done with the real data.

Generalization to new participants
Although the models were trained and tested on distinct datasets with more than half the tasks unique 
to each set, the data for training and testing were obtained from the same set of participants. As a 
stronger test of generalization, we evaluated the models with data from a new experiment involving 
naive participants (n=20, 11 females, 9 males, mean age = 21.3). These participants were trained to 
perform a 5- task battery (cognitive control, social prediction, action prediction, visual search, semantic 
prediction). For each task, there was an easy and hard condition (e.g., 2- back vs 0- back for cognitive 
control, high vs low predictability), along with the task’s associated instruction. Thus, there were a total 
of 16 conditions when including rest (fixation). Each participant completed five sessions, with fMRI 
data obtained in the first, third, and fifth sessions. Within a scanning session, there were six 11- min 
runs, and each run included three repetitions of each task (35 s) with a 10 s rest period prior to each 
5 s instruction period.

The participants were scanned on a Siemens MAGNETOM TrioTim syngo MR B17 located in the 
Henry Wheeler Jr. Brain Imaging Center at the University of California, Berkeley. The protocol used 
the following parameters: 1 s repetition time; field- of- view measuring 20.8 cm; A- to- P phase encoding 
direction; 48 slices; 3  mm thickness; in- plane resolution 2.5×2.5 mm2. To localize and normalize 
the functional data, a high- resolution, whole- brain anatomical scan (T1- weighted MPRAGE, 1  mm 
isotropic resolution) was acquired during the first session. fMRIPrep (Esteban et al., 2019; Esteban 
et al., 2020; https://fmriprep.org/en/stable/) was used to preprocess the anatomical and functional 
data, following the same analysis procedures as conducted for the main experiment.

To generate estimates of activity (beta weights), a General Linear Model (GLM) was fitted for each 
voxel to the time series data. Each of the 16 conditions was modeled as a separate regressor, with 
this repeated separately for each imaging run. Nipype (https://nipype.readthedocs.io/en/latest/) and 
custom- written scripts in Python were used to estimate the beta weights from a first- level GLM.

To evaluate model generalization to this new dataset, we used the full set of cortico- cerebellar 
connectivity models estimated with the original data set, limiting the analysis to the regular cortical 
parcellations. Since the participants were different from the original data set, we averaged the model 
weights for the original 24 participants (i.e. 3 model types x 5 levels of granularity). Each model was 
then used to predict cerebellar activity from the cortical activity obtained in the new study, with these 
predictions compared to actual cerebellar activity at the individual level. Given that the experiment 
was a training study, we expected that both the true activation patterns, as well as the signal- to- 
noise ratio would change across sessions. We therefore determined the noise ceiling for each session 
separately by calculating the reliability across odd and even runs within each session. The normalized 
predictive accuracy was determined separately for each of the three imaging sessions, with the results 
across sessions averaged.

Source data files
Model training (‘ model_ training_ ridge. csv’ and ‘ model_ training_ lasso. csv’) and evaluation (‘ model_ 
evaluation. csv’) summary results are included as additional source data in the manuscript.
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