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We present a new method to detect and adjust for noise and artifacts

in functional MRI time series data. We note that the assumption of

stationary variance, which is central to the theoretical treatment of

fMRI time series data, is often violated in practice. Sporadic events

such as eye, mouth, or arm movements can increase noise in a

spatially global pattern throughout an image, leading to a non-

stationary noise process. We derive a restricted maximum likelihood

(ReML) algorithm that estimates the variance of the noise for each

image in the time series. These variance parameters are then used to

obtain a weighted least squares estimate of the regression parameters

of a linear model. We apply this approach to a typical fMRI

experiment with a block design and show that the noise estimates

strongly vary across different images and that our method detects and

appropriately weights images that are affected by artifacts. Further-

more, we show that the noise process has a global spatial distribution

and that the variance increase is multiplicative rather than additive.

The new algorithm results in significantly increased sensitivity in the

ability to detect regions of activation. The new method may be

particularly useful for studies that involve special populations (e.g.,

children or elderly) where sporadic, artifact-generating events are

more likely.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

While functional magnetic resonance imaging (fMRI) is an

important method to investigate neural activity in vivo, it suffers

from a low signal to noise ratio. A prominent source of noise is

motion of the participant. Head movements induce spin-history

artifacts (Friston et al., 1996) and motion-by-susceptibility

interactions (Wu et al., 1997). Eye movements, as well as

movements of the tongue or lower jaw, can alter the homogeneity

of the magnetic field and introduce distortions in the images

(Beauchamp, 2003; Birn et al., 1998, 1999). While realignment
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procedures can correct for head motion after acquisition, signifi-

cant residual effects often remain (Grootoonk et al., 2000). A

second source of noise is due to physiological processes like

breathing or heart beat (Frank et al., 2001; Kruger and Glover,

2001). It is possible to partially correct for some of these artifacts

(Andersson et al., 2001; Frank et al., 2001; Friston et al., 1996;

Grootoonk et al., 2000), however, it is likely that the sources of

noise vary from data set to data set. Often, the investigator is forced

to visually inspect the raw data and exclude images that contain

obvious artifact. Here, we present a simple and new approach to

detect and correct for noise and artifacts in functional MRI time

series data.

In fMRI, we typically measure the signal intensity from N

voxels at acquisition time t = 1. . .T. Each of these T measure-

ments constitutes an image. We assume that the time series of

voxel n is an arbitrary linear function of the design matrix X plus

a noise term:

yn ¼ Xbn þ En ð1Þ
yn and En are T � 1 column vectors, X is the T � p design

matrix, and bn is a p � 1 vector of regression parameters.

Generally, fMRI analysis either assumes independent and

identically distributed noise or noise that has a specific temporal

autocorrelation structure. In many widely used methods, the

variance structure of the noise is first estimated from the data and

then utilized in the estimation of the regression parameters

(Aguirre et al., 1997; Friston et al., 1995; Worsley and Friston,

1995; Worsley et al., 2002). In all of these approaches, the noise

term is assumed to arise from a stationary process; that is, the

variance of En(t) as well as the autocovariance function is

assumed to be independent of time.

How reasonable is this assumption? If one source of noise is

due to random discrete events, for example, artifacts arising

from the participant moving their jaw, then only some images

will be influenced, violating the assumption of a stationary

noise process. To relax this assumption, a simple approach is to

allow the variance of noise in each image to be scaled by a

separate parameter. Because we are mainly concerned with the

question of stationarity, let us for now assume that the noise is

temporally uncorrelated. We will later address the influence of

temporal autocorrelation. Under the temporal independence

http://www.sciencedirect.com
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assumption, the variance–covariance matrix of the noise process

En would be:

var Enð Þ ¼

s1 0 > 0

0 s2 > 0

s s G s
0 0 > sT

3
775

2
664 r2

n ¼ Vr2
n ð2Þ

In Eq. (2), V is a diagonal T � T matrix, while rn
2 is a scalar.

Thus, the expected variance of a voxel at a certain time is a

function of the relative amount of variance in that image st and the

overall noise rn
2 observed in that voxel (for a similar multiplicative

variance model, see Worsley et al., 1996). In our model, the sum of

all st is constrained to be T. Note that the variance scaling

parameters st are the same across all voxels in one image. This

implies that, if an image shows increased noise for some voxels,

the noise for all other voxels should be increased to a similar

degree. Effectively, Eq. (2) assumes that the artifacts that lead to

increased noise levels are spatially extended and encompass

considerable portions of the brain. We will test this assumption

in the Results section.

Discrete events (e.g., swallowing) will impact only those

images that were acquired during the event. What should be done

with these images, once they are identified? A typical approach

would be to discard images based on some fixed threshold. If we

knew var(En), however, the optimal approach would be to weigh

the images by the inverse of their variance. The maximum

likelihood estimate of bn under the assumption that var(En) =

Vrn
2 is the generalized least square (GLS) estimate:

b̂bn;GLS ¼ XTV�1X
� ��1

XTV�1yn ð3Þ

V�1 ¼
s�1
1 0 > 0

0 s�1
2 > 0

s s G s
0 0 > s�1

T

3
775

2
664 ð4Þ

Because V�1 in Eq. (4) is a diagonal matrix, Eq. (3) is often

called a weighted least squares (WLS) estimate of bn.

Use of this method, however, requires that we obtain a valid

estimate of the noise level for each image. How could this be

achieved? As a first step, consider using the residuals from the

ordinary least squares (OLS) regression to estimate the variance

parameters. The residuals are:

rn ¼ yn � Xb̂bn ¼ I� X XTX
� ��1

XT
	 


yn ¼ Ryn ð5Þ

where R is the residual-forming matrix for the OLS regression.

Now, we could use rnrn
T as an estimate of Vrn

2. If we assume that

the effect of noise in fMRI data is spatially extended, we may

approximate the coefficients ŝ = [ŝ1,. . ., ŝT]
T by averaging these

variance estimates, weighted by r̂rn
2, over the whole brain. Thus,

our estimator would become:

ŝs ¼ 1

N

XN
n ¼ 1

diag rnr
T
n =r̂r

2
n

� �

r̂r2
n ¼ rTn rn= T � rank Xð Þð Þ ð6Þ

where the operator diag transforms the diagonal of a square matrix

into a column vector. While this estimator has intuitive appeal, it

has the problem of being biased and will not result in valid t values
(see Simulation results—uncorrelated noise section). The bias

arises because we based our estimates of the variance scaling

parameters on the residuals of the OLS regression. As we show in

Appendix A, the expected sum of squares of the residuals E (rnrn
T)

is not Vrn
2 but rather

E rnr
T
n

� �
¼ E Ryny

T
nR

T
� �

¼ RVRr2
n ð7Þ

In particular, time points at which many of the regressors are

non-zero will have a lower expected residual than time points at

which only the mean regressor is non-zero. In the extreme, if a

regressor was non-zero only for one time point, the residual for that

image would always be zero. One method to correct this bias is

restricted maximum likelihood (ReML) estimation, an iterative

method that maximizes the modified likelihood (for an overview,

see Speed, 1997). When trying to estimate T variance components,

however, the computational costs can quickly get out of hand. To

help us out, we can use the fact that the calculations for each

iteration can be considerably simplified due to the shape of the

variance structure in Eq. (2) (see Appendix B).

Having obtained an unbiased estimate of V, we can now replace

V with V̂V in Eq. (3) and obtain the WLS estimate b̂bn. Images that

have strongly increased residuals will now be given appropriately

less weight.

In the following, we will use empirical data from a typical fMRI

experiment with a blocked design to show that the noise estimates

strongly vary across the sequence of images and that our method is

useful in detecting artifacts. We will provide evidence that the

artifacts act in a multiplicative rather than additive fashion and test

our assumption that the noise process has a global spatial

distribution across an image. Having tested the assumptions of

the model, we will then show through Monte Carlo simulations

that our correction method is unbiased and results in valid

significance values. We then apply the method to the real data

and test whether the approach improves the sensitivity of

hypothesis testing. Finally, we consider the effects of temporally

autocorrelated noise and suggest a way to incorporate temporal

autocorrelation into the WLS approach.
Experimental methods

Data acquisition

Data were acquired with a Philips 3.0 T scanner. We used an

echoplanar pulse sequence with Sensitivity-Encoded MRI (Pruess-

mann et al., 1999) and a SENSE-factor of 2. The whole brain was

covered in 37 axial slices (3 mm thickness, 0.5 mm gap, TR = 2 s),

each of which was acquired with in an 80 � 80 Matrix (FOV was

24.0 � 24.0 cm) and reconstructed to a 128 � 128 image, resulting

in a voxel size of 1.9 � 1.9 � 3.5 mm. Each scan consisted of 6

dummy images and 144 images.

Experimental procedure

Participants held an fMRI compatible pneumatic-actuated two-

joint robotic arm. Hand position was presented as a cursor on the

back projection screen behind the participant and viewed through a

mirror. The task of the participant was to move the cursor as

quickly as possible to targets that appeared in 2 s intervals at

positions 4 cm distant from each other. Periods of 10 movements
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(20 s) alternated with periods of rest (14 s), during which the

participant positioned the cursor in the center between the two

targets. Four different types of movements were tested; the exact

nature of these is not of special interest within the scope of this

paper. Each scan consisted of 8 movement phases, 2 per condition,

and the sequence of conditions was randomized. We ran a total of 8

scans in a single session, resulting in 1152 images per participant.

Fifteen healthy participants, age ranging from 21–29, volunteered

for the experiment. To minimize head movements, participants

used a custom-fitted bite bar that was rigidly attached to the head

coil. Experimental procedures were approved by the Johns

Hopkins Institutional Review Board.

Data preprocessing and analysis

Analysis was performed using SPM 2 (Friston et al., 1999).

Images were realigned to the first volume using a 6-parameter fixed

body transformation. The data for each scan were scaled such that

the overall mean of all voxels over 144 images was 100. After a

possible weighing of the observations, a high-pass filter with a

cutoff frequency of 128 TRs was used to remove slowly varying

trends. All analyses were performed on spatially unsmoothed data.

For the linear model, we used a boxcar function for each movement

phase, convolved with the ‘‘SPM-canonical’’ hemodynamic

response function (Friston et al., 1999) and an intercept term for

each scan. This resulted in 9 regressors per scan. The estimate of the

regression parameter b̂b served as a measure for the amount of signal

change caused by that group of 10 movements. Estimates were

obtained either using ordinary least squares (OLS) or weighted least

squares (WLS) regression. For OLS, we used Eq. (3) with V set to

identity. This regression was also used to compute the residual

images (Eq. (5)). For WLS, we computed an unbiased version of the

variance scaling parameter st for each image t, using ReML

(Appendix B). This computation was performed on all voxels that

showed a significant omnibus F test with P = 0.05. The estimates

ŝ1, . . ., ŝT were then used to form V̂V for Eq. (3).
Results

Temporal non-stationarity of the noise

We investigated the temporal characteristics of the noise

process in our data. An example from a representative

participant is shown in Fig. 1A. The variance scaling parameter

for most images is low, and the residual images (e.g., Image

873, Fig. 1C) appear to be uniform with little or no spatial

structure. However, note the sudden increase in variance for

some images, particularly the first image in each scan (indicated

by the vertical lines in Fig. 1A). Clearly, the assumption of a

stationary noise process with time-homogeneous variance is

violated in the current data set.

In Fig. 1A, the first image of each scan has a variance

scaling parameter that is approximately 14 times the variance

scaling parameter of a typical image. Visual inspection of the

residuals from the OLS regression for these first images (e.g.,

residual image 1009, Fig. 1C) indicates that the artifact consists

of wide-spread ‘‘ringing’’ across the image. Importantly, while

the artifact was easily detected in the residual images, it could

not be readily seen in the raw images (in fact, until this analysis

was performed, we had overlooked the artifact). The reason for
the artifact is currently unclear. To let the magnetization of the

volume reach equilibrium, six dummy scans were included in

the EPI acquisition sequence. Inclusion of more dummy scans

did not alter the strength of the observed artifact. Within the

scope of this paper, we merely wish to make the point that the

artifact is easily detected by inspecting the residual image from

the linear model. Furthermore, weighted regression would

practically exclude such an image from further data analysis.

By weighing the image by the inverse of the variance, i.e. by

factor 1/14, influence of this image on the analysis would be

negligible. However, because this artifact is rather atypical for

fMRI data sets generated in other settings, we excluded the first

image from all further analyses.

Two brief increases in error variance can be seen in the

second half of the scan (Fig. 1A, about image 957 and 966). Each

of these phases was accompanied by head motion of the

participant. Although every participant used a custom-fitted bite

bar, the realignment algorithm estimated movement in the order

of 0.5 mm along the z direction (Fig. 1B). The slow drift in the y

direction over the period of each scan, resulting in a slow

‘‘sinking’’ of the image, is related to thermal heating of the

gradient coils and not actual head motion. Visual inspection of

the residual images (Fig. 1C, residual image 966) indicates that

the increased residual variance is not due to an incorrect

realignment of the image. Incomplete or faulty realignment

results in a rim at the outer edge of the brain and around the

ventricles, leading to residuals that are positive on one side and

negative on the other. Rather, the ventricles (see slice 22) show

consistently increased signal. This suggests that the culprit is a

spin-history artifact. Movement in the slice selection direction (z)

can result in an increase in net magnetization as previously non-

excited protons are brought into the slice, causing an increase in

signal (Friston et al., 1996).

To investigate whether increases in the error variance of single

images are exclusively due to head movement, we plotted the

variance scaling parameter for each image against the amount of

movement since the last image (Fig. 2). There is generally an

increase in variance with increased movement of the head.

However, there are also increases in variance that are unaccompa-

nied by head motion. One possible cause is swallowing and

movement of the laryngeal muscles. These kinds of movements

can directly cause strong artifacts in the fMRI data through changes

to the static magnetic field (B0) without causing overt head

movements (Birn et al., 1998).

Increased residuals can, not only arise from motion artifacts,

but also from true properties of the hemodynamic response that

are not captured in the design matrix X. For some participants,

this could be seen in slightly increased variance scaling

parameters just after the start and end of each task episode.

This indicates that the model might not have captured the exact

timing of the increase and decrease of the hemodynamic

response or that some of the voxels responded transiently to

the onset or offset of the task. The inspection of the variance

scaling parameters aligned to the task episodes can thus

illuminate aspects of the hemodynamic response that are poorly

modeled. A solution would be to change the design matrix in

such cases to better account for the shape of the true response.

This can be achieved by first estimating the hemodynamic

response function for each individual and then using this

estimate to construct a subject-specific design matrix (Aguirre

et al., 1998; Handwerker et al., 2004). Alternatively, one could
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Fig. 1. (A) The variance scaling parameter st for images 850–1030. Vertical lines indicate the first image within each scan. There are large increases in variance

at the beginning of each scan (vertical lines). There are also increases in variance coincident with head movements. (B) Realignment parameters for translation,

relative to first image of the experiment. The drift in the y direction over each scan is related to thermal heating of the gradient coils. (C) Representative slices

from residual images from the OLS regression: image 873 (normal residual), image 966 (movement related artifact), and image 1009 (first image in scan).

Arrows in panel (A) indicate the variance estimates for the three scans shown here.
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add the temporal derivative of the predicted response into the

design matrix to absorb unwanted variance (Friston et al.,

1998). In contrasts, the WLS method would suppress the

influence of poorly modeled aspects of the response on the fit.

While this may be less optimal than a change of the design

matrix, the overall parameter estimates are not biased by WLS

(see Fig. 4B).

Multiplicative vs. additive noise

A critical assumption of the model is that increases in noise

variance are multiplicative. This predicts that, in absolute terms,

voxels with a high rn
2 should show a bigger increase in variance

due to the same artifact than voxels with a low rn
2. While noise
sources such as spin-history artifacts, movement-by-susceptibility

interactions, or incomplete correction for head motion may scale

with the mean brightness of the voxel, at least some of the noise

processes in fMRI are likely to be additive, for example, noise in

the receiver coils or amplifiers. Thus, rather than a multiplicative

noise model (Eq. (2)), an additive noise model might have been

more appropriate:

var ynð Þ ¼
a1 þ r2

n 0 > 0

0 a2 þ r2
n > 0

s s G s
0 0 > aT þ r2

n

3
775

2
664 ð8Þ

To contrast the predictions of these two models, imagine a

data set that includes a subset of images that are particularly
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Fig. 2. Relationship between the variance scaling parameter and the

estimated movement in millimeters since the last volume. While increased

motion generally leads to increased noise, not all artifacts are related to

motion of the head.
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noisy, with a high image variance parameter (sH or aH) and a

subset of low-noise images with a lower image variance para-

meter (sL or aL). Further assume that our image consists of K

homogenous subsets of voxels, with each subset having a different

voxel-specific variance rk
2. The variance of data from the voxel

subset k for the high-noise images would be var(yH,k) = rk
2sH

under the multiplicative model (Eq. (2)) and var (yH,k) = rk
2 + aH

under the additive model Eq. (8). Now, critically, the multi-

plicative model predicts that the increase in variances from low-

noise to high-noise images should depend on the voxel-specific

variance:

var yH ;k

� �
� var yL;k

� �
¼ r2

ksH � r2
ksL ¼ r2

k sH � sLð Þ

In contrast, an additive model would state that the increase in

variance from low-noise to high-noise images should be the same

for all subset of voxels.

var yH ;k

� �
� var yL;k

� �
¼ r2

k þ aH � r2
k þ aL

� �
¼ aH � aL

To test these predictions, we performed an OLS regression on

a representative data set and used the residuals from all 1152

images to compute the variance scaling parameters ŝ and the

voxel-wise residual-mean-square r̂rn
2 Eq. (6).1 We then selected

81 images with a high estimate of the variance scaling

parameter, ŝt > 1.5 (mean = 2.6), and randomly sampled 81

examples from the remaining images (mean of ŝt = 0.9). Based

on the voxel-wise mean-squared residual r̂rn
2, we then divided

the data into 50 subsets of voxels. For each subset k, we

calculated the average square residual from the OLS regression

for the high-noise images and the low-noise images as an

estimate for the noise variances var (yH,k) and var (yL,k) (Fig.
1 A possible argument against this approach is that we picked the high-

noise images based on an estimate of the variance-scaling parameter

following the multiplicative model. We therefore repeated the analysis by

selecting the images with the highest mean-squared residual based on the

unweighted residuals 1
N
~N

n¼1diag rnr
T
n

� �
. The results of this analysis were

nearly identical to the results reported in Fig. 3A.
3A). If noise artifacts impact image variance additively, the

difference between these estimates should be constant across

different subsets of voxels. The data show, however, that the

variance estimates for high- and low-noise images rise with

different slopes, while the intercepts are similar. That is, the

difference between the high-noise and low-noise images

increases with increasing voxel-specific variance, arguing

strongly for a multiplicative noise model.

Spatial distribution of artifacts

The other critical assumption of the proposed method is the

spatial uniformity of the change in variance of the noise process. If

noise variance was increased occasionally but only in restricted

parts of the volume, the proposed method would lead to a loss of

efficiency because we would ignore good data in some parts of the

volume because other remote areas showed an increased residual

variance.

To test the spatial uniformity of the noise process, we estimated

the variance scaling parameters ŝ1, . . . , ŝT over the whole brain

using ReML (Appendix B). Furthermore, we used the time series

of the individual squared residuals from the OLS regression as a

rough estimate for the variance scaling parameters in each voxel

(because the n � n matrix ynyn
T has rank 1, it is not possible to

acquire the unbiased ReML estimate on the time series of just one

voxel). If the variance of the noise process would indeed fluctuate

in a global manner, then the time series of variance scaling
Fig. 3. (A) Multiplicative scaling of noise. The variance estimate for subsets

of voxels with increasing voxel-specific variances, separately calculated on

images with high noise (black dashed line) and low noise (gray line). (B)

Spatial distribution of the noise process. Correlation coefficient of the time

series of the squared residuals (r2n ,1,. . ., r
2
n,T) with the time series of the

overall estimated variance scaling parameters (ŝ1 ,. . ., ŝT).
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Table 1

Standard deviation (SD) and false-rejection rates (a) on data simulated

without temporal covariance structure

Measure OLS WLS (biased) WLS (ReML)

i.i.d.

SD (b̂bÞ 0.310 0.311 0.311

a (%) 5.05 5.53 5.10

i.i.d. + Noise spikes

SD (b̂bÞ—high 0.384 0.334 0.334

SD (b̂bÞ—low 0.309 0.309 0.309

a—high(%) 7.85 5.19 5.08

a—low(%) 3.98 5.59 5.05

Column indicates the method of fitting. OLS: Ordinary least squares, WLS:

Weighted least squares using either the biased variance estimates from Eq.

(6) or using the restricted maximum likelihood (ReML) estimate. The

simulation with noise spikes is evaluated depending on whether two (high

noise) or no (low noise) noise spikes occurred during the respective task

phase. False-rejection rates are the percentage of voxels that exceeded the

critical t value for P = 0.05 (uncorrected).
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parameters from each single voxel should correlate substantially

with the time series of variance scaling parameter from the whole

brain.

To assess the size of the correlation that would be expected

if the noise process was global, we conducted a Monte Carlo

study (see next section for details). To model the noise-pikes

observed in the real data, we increased the standard deviation of

5% of the images by factor 2. In one case, we increased the

variance for all voxel on the same images, corresponding to a

global noise process. The median correlation between the

individual squared residual time series and the variance scaling

parameters estimated on all voxels was 0.22. This value

depends slightly on the exact assumptions about the noise

process and the spatial smoothness of the data, but for realistic

parameter settings, remains between 0.15 and 0.3. In the other

case, we increased the variance for each voxel independently for

different images, corresponding to a noise process that impacts

each voxel individually. In this case, the median correlation was

close to zero.

We then calculated the correlation between the individual and

collective variance scaling parameter time series for each voxel

of one exemplary data set. The median correlation was 0.25, and

the correlation was slightly higher in the gray matter than in the

white matter (Fig. 3B). This may reflect the fact that some of

the variance fluctuations in the noise process were caused by

physiological factors or the fact that motion-related artifact was

more severe at the border of sulci. Most importantly, the

correlation was equally high through the gray matter of the

whole brain and within the range that we would expect if the

noise process was global. In summary, the estimated variance

scaling parameters appear to reflect a global noise process that

affects the whole brain.

Simulation results—uncorrelated noise

We established that the variance structure of our fMRI data

shows spikes for some images resulting from artifacts, that these

artifacts mainly act in a multiplicative fashion, and that they

have a widespread spatial distribution. We now use a Monte

Carlo simulation to show that our suggested method leads to

more efficient (lower variance) estimators than OLS and that the

fixed effect t values are unbiased. We generated 288 images

with 1000 voxels under the Null hypothesis (all b = 0), using

independent and identically distributed noise. For the simulation

with noise spikes, we increased the standard deviation of 5% of

the images by factor 2. These data were fit with a linear model

equivalent to the one used in the behavioral study, albeit only

for 2 instead of 8 scans. Thus, there were 16 movement phases

in total. Fitting was performed using OLS, WLS with the

variance estimates from Eq. (6), and WLS with the ReML

estimates as outlined in Appendix B. Standard deviation of b̂b
—and the false-detection rates a were computed across all 1000

voxels. The process was repeated 40 times.

Low variances of the regression weights are desirable because

these estimators typically are submitted to a second-level analysis

with subjects as a random factor (Searle et al., 1992). If our guess

about the variance structure is closer to the truth than the

assumption of independent and identically distributed (i.i.d.) noise

made by the OLS analysis, then the variance of b̂bWLS should be

lower than of b̂bOLS, and our second-level inference should become

more sensitive.
Unbiased fixed-effect t values become important if we wish

to make inferences on the single subject level while ignoring

possible true variability in the bs from repetition to repetition.

Under this assumption, the variance–covariance matrix of the

parameter estimates b̂b can be estimated from the residuals of

the regression (Friston et al., 1995).

var b̂bn

� �
¼ XT V̂V�1X
� ��1

r̂r2
n

r̂r2
n ¼

rTn rn

T � rank Xð Þ

tfixed ¼
cT b̂bnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTvar b̂bn

� �
c

q ð9Þ

The vector c denotes a linear combination of the b̂bs.
The standard deviation of the resulting b̂bs and the average

(false) rejection rates of the Null hypothesis are shown in Table

1. When the data are free of noise spikes (i.i.d.), the three

estimation methods result in comparable variances for the

regression parameters. The first WLS, however, has a false-

rejection rate of 5.5%, while valid t values should always lead to

a false-rejection rate that is equal to the theoretically chosen a
(5%). This is due to a bias in the estimation of the variance

structure (Worsley and Friston, 1995) and can be avoided by

using the ReML estimation for the variance scaling parameters

(third column).

For data containing noise spikes, we separated the regressors into

two groups, those that have 2 noise spikes (high noise) and those

who have no noise spikes (low noise) during their task period

(results for regressors with one noise spike fall in between these

extremes). The standard deviation of the b̂bs is substantially lower for
both WLS methods than for OLS. The false-rejection rate resulting

from OLS regression is too high for high-noise regressors, while it is

too low for low-noise regressors. When the variance parameters are

estimated using ReML, the false-rejection rates are again close to the

theoretically desired level. In summary, both suggested WLS

methods lead to consistently higher estimation efficiency on noisy
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Fig. 4. Percentage change in the statistics from OLS to WLS: (WLS �
OLS) / OLS * 100. Results are shown separately for the upper 20% of the

most significantly activated voxels. The x axis shows the mean t value

(averaged over OLS and WLS) for that percentile. (A) Change in the

variance of b̂b, estimated from the 16 occurrences of that condition across

the experiment. (B) Change in the mean of b̂b. (C) Change in the t value of a
mixed-effects model. (D) Change in the t value of a fixed-effect model.
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data. However, only the estimation of the variance parameters using

ReML results in valid fixed-effects t values.

Estimation efficiency on real data

We applied the ReML method to estimate the variance

parameters from experimental data. Because the artifact on the

first image may not be typical for other fMRI studies, we

excluded this image from analysis. The general linear model of

Eq. (3) was computed twice for each data set. In the first run,

we performed ordinary least squares (OLS) regression with V

set to the identity matrix. We then computed from the residuals

the estimates of the variance scaling parameters s1 . . . st
according to the ReML method (see Appendix B). In a second

step, we used this estimate V̂V to re-compute the regression

parameters Eq. (3), producing a weighted least squares (WLS)

estimate b̂b.
For each of the four conditions, there are 16 repetitions in the

experiment, and we use the notation b̂bn,i,j to denote the resulting

regression parameter estimate (nth voxel, ith condition, jth

repetition). Due to this design, we gained information, not only

about the mean signal change in that condition, but also about the

variance of b̂b for a specific voxel and condition. Thus, we can

compare the resulting variance of the b̂bs and the resulting t values

following either a mixed-effects or fixed-effects model difference

between OLS and WLS regression.

To compare the change in these statistics in homogenous

subpopulation of voxels, we sorted the voxels in bins based on

their involvement in the corresponding condition. We inspected the

upper 20th percentile of the most significantly activated voxels,

assuming that these are the voxels of main interest to the

investigator. We based this binning of the data on the average t

values from OLS and WLS to avoid a selection bias in favor of one

of the methods.

Fig. 4A shows the average percent change of the variance

of b̂b for the 20% most activated voxels. The variance of the

parameter estimates is 1.5–3% lower using WLS than using

OLS. Because some of the variance of b̂b for both methods will

reflect the true variance from repetition to repetition of the

task, the achieved change in variance constitutes a lower limit

for the improvement in estimation efficiency. While the

variance of the b̂b coefficients changed between methods, the

mean did not change in any systematic direction for any of the

bins (Fig. 4B).

Impact on the inference in mixed- and fixed-effects models

We next considered the effect of the higher efficiency of the

WLS estimator onto inference in the context of a within-subject

mixed-effects model (Searle et al., 1992). In the mixed-effects

analysis, we consider the b of each repetition to be sampled from a

(theoretical) population of possible values. Thus, the variance of

the estimates for condition i and voxel n should be equal to sum of

the variance of the ‘‘true’’ b and the variance that arises from our

error in estimating the true b.

var b̂bn;i;I

� �
¼ var bn;i;I

� �
þ var b̂bn;i;I � bn;i;I

� �
ð10Þ

McGonigle et al. (2000) have shown that the variance of

parameter estimates between scans or sessions can be substantial.
Thus, a mixed-effects model with repetition as a random factor

would be appropriate.

tmixed ¼
P

b̂bn;k;I=16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bn;k;I

� �
=16

q ð11Þ

The t values based on theWLSmethod are 0.5–1.5% higher than

the OLS method (Fig. 4C). While this increase may seem modest,

the increase in task-related volume is more substantial. If the

statistical map is thresholded at a P value of 0.0001 (uncorrected),

the OLS method shows 8.1% of the volume as being above

threshold, while the WLS method indicates that 8.3% of the volume
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Table 2

Standard deviation (SD) and false-detection rates (a) for data simulated

with an autoregressive temporal covariance structure (order 1, coefficient =

0.2)

Measure OLS WLS AR WLS + AR

AR (1)

SD (b̂bÞ 0.376 0.376 0.375 0.376

a (%) 9.13 9.45 5.05 5.06

AR (1) + Noise spikes

SD (b̂bÞ—high 0.441 0.398 0.441 0.395

SD (b̂bÞ—low 0.375 0.376 0.375 0.375

a—high(%) 11.15 9.10 7.40 5.23

a—low(%) 7.65 9.44 4.55 5.08

Column indicates the method used for fitting. OLS: Ordinary least squares,

WLS: Weighted least squares using restricted maximum likelihood (ReML)

estimate. AR: Autoregressive model, as used in SPM2. WLS + AR:

combination of weighted least squares and autoregressive model. The

simulation with noise spikes is evaluated depending on whether two (high

noise) or no (low noise) noise spikes occurred during the respective task

phase.
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is above threshold. We might expect a similar gain for a between-

subject mixed-effects model. In this case, however, functional and

anatomical between-subject variability additionally increases the

variance of the parameter estimates.

We also calculated the fixed-effects t value for each voxel

and condition for both the OLS and the WLS method. The

resulting t values are 4.5–6% higher for all bins in the WLS

vs. OLS analysis (Fig. 4D). If we again threshold the volumes

at P = 0.0001, we find a super-threshold volume of 20.3% of

the total volume for the OLS analysis and 21.4% for the WLS

analysis.

In summary, our method leads to higher estimation

efficiencies and higher detection power in a mixed-effects

analysis and to an even larger degree in a fixed-effects analysis.

Because we excluded the artifactual first image from the

analysis and because our subjects used a bite bar to avoid

head movements, we believe that the observed improvement

may be quite typical for fMRI studies and will be even more

substantial if the scans include more artifacts.

Temporally autocorrelated noise

The above analysis assumed temporally uncorrelated noise.

However, it is known that fMRI time series typically shows temporal

autocorrelation, even after a high-pass filter has been applied to

remove slow varying trends (Woolrich et al., 2001; Worsley et al.,

1996; Zarahn et al., 1997). Ignoring this autocorrelation can lead to

lower estimation efficiency and impact the validity of fixed-effects t

values. To address this issue in the frame work of the suggestedWLS

method, we combined the variance model in Eq. (2) with a term that

simulates a temporal autocorrelation of a fixed shape. In particular,

we added a temporal autocorrelation term as it would arise from an

autoregressive noise process with a regression coefficient of a = 0.2,

as is the usual approach in SPM2. The weights of the diagonal terms

(s1,. . ., sT) and the weight of the autoregressive term (sT + 1) can

again be estimated using ReML (see Appendix C). A covariance

model that is composed of an autoregressive term plus uncorrelated

white noise has been suggested by Purdon and Weisskoff (1998).

The novel contribution here is that the diagonal elements of the

covariance matrix are allowed to differ such that varying levels of

noise for different images can be captured.

We used a Monte Carlo simulation to compare this method

to the ‘‘standard’’ algorithm in SPM2, which uses ReML to

estimate the weights for the temporal autocorrelation for a fixed

autoregressive process, as well as for the derivative of the

variance matrix in respect to the autoregressive coefficient a.

We performed a simulation identical to the one described in the

last simulation section, except that we used noise generated by

an autoregressive process with a = 0.2. The data were fit with

OLS, WLS (ReML), and two ReML methods that take into

account temporal autocorrelation. The first was the standard

procedure in SPM2, which estimates the contribution of two

variance components: the variance structure of an autoregressive

process with a = 0.2 and the derivative of that structure in

respect to a. The second method was a combination of WLS

and the autoregressive model as outlined in Appendix C.

For data without noise spikes, all algorithms lead to

comparable estimation efficiency (Table 2). In contrast, t values

are valid only for the two models that take into account the

temporal autocorrelation structure. Methods that assume inde-

pendent noise show false-rejection rates of higher than 5% (see
also Friston et al., 1995; Purdon and Weisskoff, 1998). When

noise spikes are added to the data, the standard deviation of the

b̂bs is lower for both WLS methods (independent whether these

account for temporal autocorrelation or not) than for the two

methods that assume stationary variances. But only the method

that combines WLS and temporal autocorrelation leads to valid t

values under this condition.
Discussion

In model fitting, it is always a good idea to inspect the

residuals. This is non-trivial endeavor in fMRI studies due to

the sheer amount of data. While many analysis packages (e.g.,

SPM2, AFNI) only provide the residual-mean-squares image

averaged over all time points, tools for the graphical inspection

of residuals have been developed (Luo and Nichols, 2003). In

this spirit, we propose here to inspect the time course of the

squared residuals averaged across the brain and then to examine

the individual residual images that show increased variance. In

the present study, this strategy led to the detection of artifacts

that corrupted the fMRI data on the first images of each scan, a

fact that was not apparent from the inspection of the raw data

files. Furthermore, movement-related artifacts could easily be

detected. Modified SPM2 Matlab routines that allow for the

extraction of the temporal statistics of the residuals and the

implementation of WLS using ReML can be downloaded from

http://www.bme.jhu/~reza/imaging/SPMj.html.

Ideally, one would use these techniques to identify unwanted

sources of noise and consequently eliminate them. However, some

artifacts are only detected after the data have been completely

collected. Others cannot be avoided because they are caused by overt

eye, mouth, or arm movements that are essential parts of the

experimental paradigm. While specific methods have been sug-

gested to correct for artifacts arising from head movements

(Andersson et al., 2001; Friston et al., 1996; Grootoonk et al.,

2000),we proposed here a general technique that allows the detection

and correction of artifacts independent of origin and form. We

showed that most noise-generating artifacts are quite spatially

http://www.bme.jhu
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extended (see also, Frank et al., 2001), justifying the estimation of a

variance scaling parameter for each image from the residual sums-of-

squares across the volume of interest. These estimates can then be

used toweigh each observation inversely to the estimated variance of

that image, resulting in optimal estimation efficiency.

The validity of t values in a fixed-effects analysis depends on the

accuracy of the estimated covariance structure of the errors (Friston

et al., 2000). Our Monte Carlo simulations showed that, if the real

covariance structure differs from the assumed structure, large biases

in the significance values can occur. We therefore used ReML

estimation to arrive at reasonably accurate estimates of the variance

components. We derived a computationally feasible algorithm to

implement this idea both for the assumption of independent and

autocorrelated noise.

Applied to the current data set, the resulting estimators showed a

higher efficiency than the traditional OLS estimators. Using a

mixed-effects model, the gain was a 0.5–1.5% increase of the t

value for voxels of interest, which translated to a 2.5% increase in the

super-threshold volume, using a statistical threshold in the typical

range for imaging studies. For a fixed-effect model, the gains were

substantially higher, indicating that the noise variance is severely

overestimated when noisy images are fully included into the

analysis.

Because our study was conducted with a bite bar and with trained

and healthy cooperative volunteers, we believe that our data had

comparably few artifacts. However, in studies with children or

special populations, we expect our procedure to result in higher

improvements in estimation. In summary, the suggested method

significantly improves the ability to draw sensitive and valid

inferences from potentially noisy fMRI data.
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Appendix A. Expected sum of squares of the residuals

E rnr
T
n

� �
¼ E Ryny

T
nR

T
� �

¼ EfR Xbþ Enð Þ Xbþ Enð ÞTRTg

¼ E RXbbTXTRT
� �

þ E REnE
T
nR

T
� �

RXbbTXTRT ¼ I� X XTX
� ��1

XT
	 


XbbTXT

� I� X XTX
� ��1

XT
	 


¼ 0

EfrnrTn g ¼ EfREnETnRTg ¼ R var Enf g þ E Ef gEfETg
� �

RT

¼ RVRrn

(A.1)
Appendix B. Restricted maximum likelihood estimation

Assume a linear model as in Eq. (1), with a model of the noise

covariance structure denoted by the matrix V(s), a function of a

vector of parameters s. Unbiased estimators of s can be obtained by

maximizing the restricted log-likelihood of s (Speed, 1997). Given

that y¨N (Xb, V(s)), we have:

lr sjyð Þ¼� 1

2

	
lnjV sð Þjþ lnjXTV sð Þ�1

XjþyTRV sð Þ�1
Ry



þ const ðB:1Þ

This likelihood can be maximized using an iterative method.

We start with an arbitrary guess s(1) for the variance parameters.

For each iteration u, we compute the variance–covariance matrix

V, following Eq. (2), and the corresponding residual-forming

matrix R.

V uð Þ ¼ V s uð Þ
	 


R uð Þ ¼ I� X XTV uð Þ�1X
	 
�1

XTV uð Þ�1

� �
ðB:2Þ

Using the derivation described by Speed (1997), we now

compute the first derivative of the restricted log-likelihood with

respect to the parameters si. Using the following identity:

dlnjV sð Þj
dsi

¼ tr V�1 dV

dsi

��

where tr represents the trace operator, we arrive at:

dlr

dsi
¼ � 1

2

 
tr V�1 dV

dsi

��
þ tr XTV�1X

� ��1
XT dV�1

dsi
X

��

þ yTR
dV�1

dsi
Ry

!

Using the following two identities:

d V sð Þð Þ�1

dsi
¼ � V�1 dV

dsi
V�1

tr ABCð Þ ¼ tr CABð Þ

we simplify the derivative:

dlr

dsi
¼ � 1

2

 
tr

dV

dsi
V�1

��

�tr X XTV�1X
� ��1

XTV�1 dV

dsi
V�1

��

�tr yTRV�1 dV

dsi
V�1Ry

�� !

¼ � 1

2
tr
	 dV
dsi

V�1 I� X XTV�1X
� ��1

XTV�1
	 


� yyTRV�1 dV

dsi
V�1R




¼ � 1

2
tr

dV

dsi
V�1R � yyTRV�1 dV

dsi
V�1R

��
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Therefore, on iteration u, we have a vector g that represents the

derivative of the log-likelihood:

g
uð Þ
i ¼ @lr

@si
¼ � 1

2
tr

 
@V sð Þ
@si

V uð Þ�1R uð Þ

� yyTV uð Þ�1R uð Þ @V sð Þ
@si

V uð Þ�1R uð Þ

! ðB:3Þ

Next, we compute the negative expected second derivative of

the log-likelihood with respect to the parameters, the Fisher-

information matrix F:

F
uð Þ
i;j ¼ �b

@2lr

@si@sj�
¼ 1

2
tr V uð Þ�1R uð Þ @V sð Þ

@si
V uð Þ�1R uð Þ @V sð Þ

@sj

��
ðB:4Þ

We update the guess of s using the Newton–Raphson method

s u þ 1ð Þ ¼ s uð Þ þ F uð Þ�1g uð Þ ðB:5Þ

and iterate Eqs. (B.2–B.5) until convergence.

Calculating the Gradient and Fisher-scoring matrix can be

computationally expensive, especially if each image has a

separate parameter. However, the derivatives
@V sð Þ
@si

are all sparse

T � T matrices with the only non-zero element being a one at

the ith row and ith column. We define P(u) = V(u)�1R(u) and

introduce the notation Pi ,*
for the ith row and P

*
, j for the jth

column of P and thus can simplify the computation of the

gradient:

gi ¼ � 1

2
Pi;i þ

1

2
trace yyTP

4;i
Pi;4

	 


¼ � 1

2
Pi;i þ

1

2
Pi;4

yyTP
4;i

	 

g

¼ � 1

2
diag Pð Þ þ 1

2
diag PyyTP

� �
ðB:6Þ

as well as the computation of the Fisher-information matrix:

Fi; j ¼ 1
2
Pi;jPj;i

F ¼ 1
2
PoPT ðB:7Þ

where o is the element-by-element multiplication of two

matrices. When using Eqs. (B.6) and (B.7) in the iterative

algorithm outlined above, the iteration can be computed rapidly

even for fairly long time series of data.

To compute the estimate for the variance parameters for a set of

N voxels, we replace the term yyT in Eq. (B.6) with the weighted

squared data over those voxels:

1

N

XN
n ¼ 1

yny
T
n =r̂r

2
n ðB:8Þ

It is important to note that ReML will not converge in our case

when the above matrix Eq. (B.8) is ill-conditioned, i.e. close to

singular. To prevent this, it is necessary to ensure that enough

independent voxel time series are averaged in Eq. (B.8). Therefore,

it is advisable to use this method on spatially unsmoothed data.
Appendix C. Inclusion of autocorrelation terms in the variance

For the inclusion of an autocorrelation term, we augment the

vector s by additional elements that stand for the covariance

structure arising from an autoregressive process.

var enð Þ ¼

s1 0 0 >

0 s2 0 >

s s s s
0 0 > sT

3
775

2
664 r2

n

þ sT þ 1

1 a a2 >

a 1 a >

s s s s
aT�1 aT�2 > 1

3
775

2
664 r2

n

¼ diag�1 s1 N Tð Þ þ sT þ 1A
� �

r2
n ðC:1Þ

where diag�1 takes a column vector and transfers it into the

diagonal of a square matrix. We can now use ReML to estimate s.

We can use Eqs. (B.6) and (B.7) to compute the 1st–Tth element of

G and 1st–Tth row of F and invoke Eqs. (B.3) and (B.4) to

compute element T + 1 of G and row T + 1 of F by noticing that
@V sð Þ
@sT þ 1

¼ A.
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