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How do populations of neurons represent a variable of interest? The notion of feature spaces is a useful concept
to approach this question: According to thismodel, the activation patterns across a neuronal population are com-
posed of different pattern components. The strength of each of these components varies with one latent feature,
which together are the dimensions along which the population represents the variable. Here we propose a new
method to determine the number of feature dimensions that best describes the activation patterns. The method
is based on Gaussian linear classifiers that use only the first d most important pattern dimensions. Using
cross-validation, we can identify the classifier that best matches the dimensionality of the neuronal representa-
tion. We test this method on two datasets of motor cortical activation patterns measured with functional mag-
netic resonance imaging (fMRI), during (i) simultaneous presses of all fingers of a hand at different force
levels and (ii) presses of different individual fingers at a single force level. As expected, the new method
shows that the representation of force is low-dimensional; the neural activation for different force levels is scaled
versions of each other. In comparison, individualfinger presses are represented in a full, four-dimensional feature
space. The approach can be used to determine an important characteristic of neuronal population codeswithout
knowing the form of the underlying features. It therefore provides a novel tool in the building of quantitative
models of neuronal population activity as measured with fMRI or other approaches.

© 2013 Elsevier Inc. All rights reserved.

Introduction

One of the key questions in neuroscience is how populations of neu-
rons represent the world surrounding us. Representation here is de-
fined in a broad sense: it simply implies that the activity of a certain
population of neuronal units (neurons, cortical columns, or voxels) con-
tains information about a variable that characterizes an object or the
state of the world, for example the identity of a face or the velocity of
an arm movement. While relatively commonplace in neurophysiology,
representational analysis approaches are increasingly applied also to
functional magnetic resonance imaging (fMRI) data (for reviews, see
Haynes and Rees, 2006; Tong and Pratte, 2012). The novel aspect of
this class of analyses is that it asks questions regarding neural represen-
tation, rather than neural activation. If individual voxels have different
tuning functions over the possible values of the variable, then the corti-
cal area can represent the variable faithfully without showing any over-
all differences in mean activation level between conditions (Wiestler et
al., 2011). Therefore, multivariate analysis can detect representations
thatmay not be visible to more traditional mass-univariate analysis ap-
proaches (i.e. Friston et al., 1994).

Decoding models, especially classification, have proven to be very
useful as methods to establish whether the activity of an ensemble of
neuronal units contains information regarding (i.e. represents) a certain
variable (Pereira et al., 2009). In classification approaches, one attempts
to predict the value of the represented variable – often in terms of dis-
crete experimental conditions – based only on the activity pattern of a
certain cortical region. The classifier is trained on a subset of the data
and is subsequently tested on the remaining set (cross-validation).
Above-chance classification accuracy therefore implies that different
conditions lead to reliably different activity patterns within the region.
Following our definition, this implies that the region represents the var-
iable in question.

However, from the neuroscientific point of view, we would not only
like to determinewhether activity in a region represents a certain exper-
imental variable, but also how the region does so. In approaching this
question, it is useful to consider the general framework depicted in
Fig. 1A (Naselaris et al., 2011). The core idea is that the connection be-
tween the measured neural activation patterns and the experimental
conditions is mediated by a set of latent (hidden or unobserved) fea-
tures that the region represents. Each feature is associatedwith a specif-
ic pattern component, and the observed activity patterns are the sum of
different pattern components (Diedrichsen et al., 2011), weighted by
the value of the corresponding feature (Fig. 1B). The mapping from ex-
perimental conditions to features is unknown and can be any arbitrary
non-linear function. In this framework, the question of how a region
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encodes certain experimental conditions is equivalent to trying to char-
acterize the space spanned by the latent features.

One important characteristic of a feature space is its dimensionality:
thenumber of feature dimensions, and hence the number of correspond-
ing pattern components, that underlie the observed activation patterns
(D, in Fig. 1B). Take as an example a neural population that represents
the direction and amplitude of reaching movements (Eisenberg et al.,
2010; Schwartz et al., 1988) via a set of units that show cosine tuning
with the angle ofmovement direction. Thus, each unit would showmax-
imal activity for its preferred direction, the lowest activity the opposite
direction, with intermediate activity for the remaining directions. A pop-
ulation of such units (eachwith its own preferred direction andmodula-
tion depth) would represent different planar movements in term of two
latent features (in this case the length of the x- and y-components of the
movement). Thus, if we recorded the neural activity of this region during
planar reaching movements in 4 different directions, then these move-
ments should lead to activation patterns that are equally spaced in a
two-dimensional feature space (Fig. 2C).

However, due to the anisotropy in the biomechanics of the arm
(Bhushan and Shadmehr, 1999), some of these movement directions
will require more force and effort than others. Thus, classification
could also yield above-chance accuracy if the neural activity in a region
only varied with the exerted effort, rather than with movement direc-
tion per se. In this case, the regionwould “represent” the four conditions
by virtue of one single variable (i.e. effort, or any nonlinear function
thereof). Consequently, the four experimental conditions would vary
only along one pattern component (Fig. 2A). Thus, bymeasuring the di-
mensionality of the representation, we can test whether a region has a
full representation of movement direction (regardless of the shape of
this representation), or whether a region simply distinguishes between
the different directions by the virtue of a single unknown variable.

Finally, it is important to consider that differences in dimensionality
are quantitative, rather than qualitative. For example, if the conditions
are randomly spaced in feature space (Fig. 2B), then one dimension
will (by chance) separate the conditions better than the other. This rep-
resentationwould therefore occupy an intermediate position between a
one-dimensional (Fig. 2A) and a two-dimensional representation with
evenly spaced conditions (Fig. 2C). Therefore, we can characterize rep-
resentations not only by the number of dimensions, but also by how the
information is distributed across these dimensions.

In this paper, we will first formalize the idea of pattern components,
latent features, and feature spaces. We will then introduce a method,
based on the Gaussian linear classifier, to determine the underlying di-
mensionality of the representation, and validate the method using
Monte-Carlo simulations. We will then turn to two empirical examples,
one in which the underlying feature space is relatively low-dimensional,
and a second one which has a full-dimensional representation.

Methods

Generative model and notation

We consider here experiments that measure the neural response
in K experimental conditions. Each condition is measured N times,
to a total of N × K trials. The nth measurement of population activity
for condition k is denoted by the P × 1 vector yk,n, which contains all P
features (voxels, neurons, electrodes, time points) that describe the
measurement on that trial.

The generative model (Fig. 1B) assumes that each measured activ-
ity pattern is a linear combination of different pattern components,
each of which represents a certain feature of the underlying represen-
tations. To formalize this relationship, each experimental condition is
associated with one feature vector fk, whose elements form the di-
mensions of the feature space. The length of this vector (D) therefore
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Fig. 1. Latent feature spaces. (A) In the theoretical framework, the observed patterns of neu-
ral activity are explained by a set of latent features, each of which is linearly combined with
an associated pattern component. Themapping between the experimental conditions (stim-
uli, movements, tasks, etc.) and the features (dashed line) can be non-linear. (B) Mathemat-
ically, each observed pattern (yk,n) is a linear combination of different pattern components
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Fig. 2. Conditions can be differently arranged in feature space. Shown are the values of four conditions on two feature dimensions. Each feature dimension is associated with a pattern
component, which determines the mean activity pattern for each condition. (A) When all four conditions only differ on a single feature dimension, only one dimension in pattern
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distinguishability of the conditions.
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defines the dimensionality of the feature space. The observed activity
patterns yk,n are linear combinations of the pattern components ud

(P × 1 vectors) each weighted by the dth element of the latent fea-
ture vector for condition k (fk(d)) plus random noise:

yk;n ¼
XD
d¼1

udf
dð Þ
k þ εk;n: ð1Þ

Thus, each pattern component expresses the change in the pattern
of neural activity for a given change in the value of the corresponding
element of the feature vector. We consider pattern components to be
random vectors (Diedrichsen et al., 2011), drawn independently from
the same distribution. This is simply for convenience; the introduc-
tion of a covariance structure across pattern components can be
equally translated into a change in the distribution of conditions in
the feature space. Under these assumptions, the expected (or mean)
value of the neural response for each experimental condition is

μk ¼
XD
d¼1

udf
dð Þ
k : ð2Þ

Reduced-dimensional linear classifier

Here we propose a method to determine the dimensionality of the
feature space. The core idea of the method is to use a series of Gaussian
linear classifiers (for an introduction, see Duda et al., 2001), each of
which uses only the d most important dimensions of the training data
to classify the test data in a cross-validated approach. Classifiers that
use fewer dimensions than present in the representation will perform
poorly, as they neglect important information. Classifiers that use
more dimensions than necessary will over-fit the data and equally per-
formpoorly. Optimal classification performancewill ideally be achieved
only by the classifier that uses the correct number of dimensions. In this
section, wewill first derive the standard (or full-dimensional) Gaussian
linear classifier and then show how to reduce its dimensionality.

The generative model for the Gaussian linear classifier assumes
that the activity patterns over P voxels for each condition – in the
context of classification typically referred to as classes – are distribut-
ed as multivariate normal random variables with a common P × P
covariance matrix ∑W, and class-specific P × 1 mean pattern μk.

The Gaussian linear classifier assigns a new pattern y (a measured
P × 1 vector) to the class k, for which the (log-) probability is highest
that y was drawn from the corresponding class distribution. This
log-probability can simply be derived from the fact that the patterns
for each class have multivariate normal distribution:

log p yjkð Þ ¼ −1
2

y−μkð ÞT ∑−1
W y−μkð Þ−c

¼ μT
k ∑−1

W y −1
2
μT
k ∑−1

W μk −1
2
yT ∑−1

W y −c
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
independent of k

; ð3Þ

where c is a collection of constant terms. Note that the bracketed
term does not depend on the class k and can therefore be dropped
for the classification.

Assuming we have measured N trials for each condition k, we train
the classifier on a set of N ∗ K data points by obtaining estimates of
the expected class means (μ̂ k), and the covariance matrix (Σ̂W).

μ̂ k ¼
1
N

XN
n¼1

yk;n

P̂
w ¼ 1

N−1ð ÞK
XK
k¼1

XN
n¼1

yk;n−μ̂ k

� �
yk;n−μ̂ k

� �T
:

ð4Þ

Because the estimate of the within-class covariance, Σ̂w, is usually
rank-deficient (because P ≥ (N − 1)K), we regularize it by adding a
small constant to the diagonal, here 1% of the mean of the diagonal el-
ements. While this method is relatively ad-hoc, it reliably produces
good cross-validated accuracies on real neural data (Diedrichsen et
al., 2012; Wiestler et al., 2011) and often outperforms more princi-
pled forms of regularization (Ledoit and Wolf, 2003).

By plugging in these estimates into Eq. (3) we can obtain a dis-
criminant function for each class (gk, see below) and assign the new
pattern y to the class with the highest gk.

gk yð Þ ¼ hky−
1
2
hkμ̂ k

hk ¼ μ̂ T
k
P̂−1

W

ð5Þ

where hk is a (column-) discrimination vector that can be pre-calculated
to increase computational speed. As we can see from this derivation, a
Gaussian generative model results in the well-known Fisher linear dis-
criminant analysis (LDA), in which the classification function is linear
in the data vector y.

The newmethod is based on a series of linear classifiers, each using a
reduced number of pattern dimensions. These pattern dimensions can
be most easily found using an alternative representation of the data.
We therefore first transform the data and the condition means into a
pre-whitened space, by multiplying them with the inverse square root
of the covariance matrix: y* = ΣW

−1/2y, and μk⁎ = ΣW
−1/2μk. In this new

space, the within-class variance is spherical, var(y*) = I and the
log-likelihood (Eq. (3)) equals (up to a constant) the squared Euclidian
distance between a pattern and the group means.

log p
�
y� kj Þ ¼ −1

2
y�−μ�

k

� �T y�−μ�
k

� �
−c

¼ μ�T
k y�−1

2
μ�T
k μ�

k−
1
2
y�Ty�−c:

ð6Þ

To capture the spacing of the group means in this space, we now
calculate the between-class covariance matrix (P × P):

∑�
B ¼ 1

K

XK
k¼1

μ�
k−μ�� �

μ�
k−μ�� �T

¼ 1
K

XK
k¼1

Σ−1=2
W μk−μð Þ μk−μð ÞT Σ−1=2

W : ð7Þ

where μ is the mean activation pattern (P × 1) across all classes in the
original space, and μ* is the mean pattern in pre-whitened space.
Given this result, we can now determine how well any arbitrary di-
rection in the pre-whitened space distinguishes between the classes.
For this we project the whitened class means onto any vector w, and
calculate the between-class variability for these projected values:

S wð Þ ¼ 1
K

XK
k¼1

wT μ�
k−μ�� �

μ�
k−μ�� �Tw ¼ wTΣ�

Bw: ð8Þ

Thus, larger values of S(w) indicate a better separation between
the classes or conditions. To find the vector that separates the classes
best, we therefore have to find thew that maximizes S(w). This is the
classical eigenvalue problem, in which the eigenvectors of ∑B

⁎ are
the d orthogonal directions (w) that provide optimal separation of
the conditions.

Consider a case in which the underlying feature space is truly one-
dimensional. In this scenario, we note that the separation along any
other dimension orthogonal to the pattern component associated with
the featurewill be zero, i.e. we should find only one non-zero eigenvalue.
If, however, the patterns differ along more than one dimension, then for
each additional separating dimension, an additional eigenvalue will be
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non-zero.Maximally, we canfindK-1 non-zero eigenvalues forK classes:
we call this a full representation.

On empirically measured data sets, all K-1 eigenvalues will be non-
zero. This is because themeasurements are noisy, and due to these ran-
dom fluctuations the patterns will differ, at least slightly, along all pos-
sible dimensions. Since there is no closed-form solution for the size and
distribution of eigenvalues under certain dimensionalities, we propose
to use cross-validation to estimate the true number of dimensions.

In this scheme, we repeatedly divide the data set into a test set and
training set, typically by taking one imaging run as a test set, and using
the remainder of the data from that participant as a training set. The
parameters of the classifier are then estimated on the training set
(Eq. (4)), and used to classify the measured patterns (y, P × 1 vectors)
of the test set. To reduce the classifier to d dimensions, we project the
data and the estimated class means onto the eigenvectors associated
with the d highest eigenvalues. Let the columns of matrix W(d) be the
d = 1 … K-1 eigenvectors of the estimated between-class covariance
matrix in pre-whitened space (̂�B), then the new d-dimensional classifi-
cation functions are:

g dð Þ
k yð Þ ¼ W dð ÞT μ̂

�
k

� �T
W dð ÞTy�−1

2
W dð ÞT μ̂

�
k

� �T
W dð ÞT μ̂

�
k

� �

¼ h dð Þ
k y−1

2
h dð Þ
k μ̂ k

h dð Þ
k ¼ μ̂

T

k Σ̂
−1=2

W W dð ÞW dð ÞT Σ̂
−1=2

W
:

ð9Þ

We then apply each d-dimensional classifier to the independent test
set. This method is then repeated, each time selecting a different run to
serve as test set. Given sufficient data, the classifier that matches the di-
mensionality of the underlying feature space should have the best clas-
sification accuracy. Classifiers with fewer dimensions should miss
essential features of the data; classifierswithmore dimensionswill cap-
ture all information, but the additional dimensionwill causemore noise
in the discriminative functions (Eq. (9)), ultimately leading to more
misclassifications (over-fitting).

Generation of simulated data

To generate artificial data,we first defined a feature space to have di-
mensionality D. We then assigned each of the K experimental condi-
tions a “true” value in this feature space, i.e. for each condition we
generated a vector fk of length D. Two approaches were used: For ran-
domly distributed feature vectors (Fig. 2B), we drew the feature vector
for each condition from amultivariate standard normal Gaussian (mean
zero, identity covariance matrix). Secondly, we also generated the fea-
ture vectors such that each feature dimension provided equal separa-
tion between conditions (Fig. 2C). To achieve this, we first generated a
feature space with as many dimensions as experimental conditions by
setting the kth element of each feature vector fk to 1, while the other el-
ements were set to zero. We then concatenated these column vectors
into a matrix F and subtracted the mean of each row, resulting in a ma-
trix with values of 1 − 1/K on the diagonal, and −1/K elsewhere. We
then projected the feature vectors ontoD eigenvectors of F (each having
an identical and non-zero eigenvalue). This method ensures in general
(for any D ≤ K) that all D feature dimensions are independent and pro-
vide the same amount of separation between K conditions.

After generating a latent feature vector for each experimental condi-
tion, we then generated for each feature dimensions a pattern compo-
nent vector, ud. These P × 1 vectors were independently drawn from a
multivariate normal distributionwith 0mean and variance Iσa

2. This var-
iance σa

2 determines how strongly the features are represented (relative
to the noise) in the fMRI signal. For all simulations, we assumed that the
patterns are independent across the P voxels (or neuronal units);
however all results also hold when a spatial covariance is introduced
(Diedrichsen et al., 2011).

For each dimensionality and spacing of features, we generated
10,000 simulation runs. We systematically varied the variance parame-
ter σa

2 between 0 and a value that gave us a classification accuracy of
100% for the full-dimensional classifier. To be able to compare the clas-
sification accuracy curves between simulated data set of different di-
mensionality, we selected for Figs. 3 and 4 only simulation runs that
had a fixed value for the full-dimensional classifier. For comparison
with the empirical data, we matched group of voxels with the simula-
tion runs that had the same accuracy for the full-dimensional classifier
(see Random subspace method section).

General MRI methods

All participants were scanned on a 3 T Siemens Trio system, which
was equipped with a 32-channel head coil. Functional data was ac-
quired using a 2D echo-planar imaging sequence with 32 interleaved
slices and an isotropic resolution of 2.3 mm (TR = 2.72 s). Field-maps
were obtained after the first functional run to correct for inhomogene-
ities in the primary magnetic field (Hutton et al., 2002). For each of
the participants, we also acquired a single T1-weighted anatomical
scan (3D MPRAGE sequence, 1 mm isotropic, 240 × 256 × 176 mm
FOV).

Tomeasure the isometric forces generated by each digit of the hand,
we used a custom-built response box with five keys, each of which was
equippedwith a force transducer (FS-series, Honeywell). The keysmea-
sured force up to 20 N with a repeatability of b0.05 N. The force trans-
ducer signals were low-pass filtered at themagnetic roomwall to avoid
the ingress of RF-noise into the MRI environment, and subsequently
amplified and digitized outside the magnet room. The response key-
boardwas firmly placed on the lap of the participant, and tilted towards
them at a ~45° angle. Visual stimulus was provided to the participants
via a back-projection screen through a mirror mounted on top of the
head-coil. The Ethics committee of University College London approved
all experimental procedures.

Representations of force levels (Experiment 1)

Five participants volunteered for this experiment. They were
healthy and right handed (3 females, 2 males, mean age = 23 years,
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SD = 6.44). During the fMRI scan participants were visually instructed
to produce different force levels through isometric key presses of all fin-
gers of the right hand. The forces over all fingers were summed togeth-
er. As a target for this summed force we used the four different force
levels of 5, 10, 20, and 40 N, corresponding to 1, 2, 4 and 8 N per finger
on average. While the distribution of forces across fingers did not mat-
ter, participantswere instructed to distribute the forces over all five fin-
gers in a comfortable, natural manner. Analysis of the behavioral data
shows that participants mostly scaled a single force pattern. A square
(~1 by 1°) in the center of the screen changed the brightness propor-
tional to the sumof all finger forces that participants applied to the key-
board. A single trial (10.8 s, 4TRs) consisted of four presses of the same
force level. Each press was cuedwith the presentation of 24 circular pie
segments (diameter 15° visual angle) around the central square. Alter-
nating wedges were assigned brightness proportional to the target
force, while the others were black. The segments alternated between
black and the brightness with a frequency of 10 Hz to provide optimal
stimulation to primary visual cortex. Participants were instructed to
match the brightness of the center square to the brightness of the sur-
rounding segments. After 1.6 s, the visual stimulus was switched off,
and participants stopped pressing and relaxed their fingers. After
1.1 s, the next press began. We acquired a total of 8 imaging runs,
each consisting of 16 trials (four per force level) in pseudo-random
order. We also randomly intersperse five rest phases of 16.2 s length,
causing each run to be 4.59 min (102 TRs) long.

Representation of individual finger presses (Experiment 2)

The data set has been published and the main methods de-
scribed in detail (Experiment 1, Diedrichsen et al., 2012). Six
right-handed healthy young participants (2 females, 4 males,
mean age = 25.9 years, SD = 5.1) were scanned while making iso-
metric key presses on the force measurement board. Each trial lasted
3 TRs (8.16 s) and startedwith a presentation of an instruction stimulus
that indicated which finger of which hand had to be pressed. The stim-
ulus persisted on the screen for 1.36 s before being removed. After this
short instructional cue, the visual display was identical for the different
trial types. The central fixation-cross then turned into the white letter
“P”, which was the go signal to press the selected finger. When the
force on the instructed finger exceeded 2.3 N, a response was recog-
nized and the central letter “P” turned blue. A total of five go-signals
per trial were presented 1.36 s apart. Each of the ten fingerswas probed
three times during each imaging run, resulting in 30 trials per run. Ad-
ditionally we inserted five rest phases of 5–6 TR lengths, during which
the participants only fixated a central fixation cross, resulting in 126
TRs per run. We collected eight imaging runs per participant. For the

analysis presented here, we used the data from both the left and right
motor cortex, but only for trials in which a contralateral finger was
pressed.

Basic data analysis

The functional data was analyzed using SPM 8 (Friston et al., 1999)
and custom-written Matlab code (Mathworks, Natick, MA). In order to
allow for time so that the MRI response builds up to steady state, the
first three volumes of each imaging run were discarded. The different
slices were temporally re-aligned to account for the interleaved slice ac-
quisition. Imageswere corrected for field inhomogeneities and headmo-
tion using a six-parameter rigid-body alignment (Hutton et al., 2002).
We then constructed a first-level linear model with a design matrix
with a separate regressor for each condition, which took the value of
one during a certain trial type and zero otherwise. Each runwasmodeled
by a set of independent regressors. These boxcar regressors were then
convolved with the standard hemodynamic response function. The de-
sign matrix and data were both high-pass filtered with a cutoff period
of 128 s. The design matrix also included a separate intercept for each
imaging run. The resultant regression coefficients (beta-weights) there-
fore measured the relative change in BOLD signal for a specific condition
within an imaging run, and were taken as input data (y) for the classifi-
cation analysis. The linear model was estimated on unsmoothed data.

To visualize the data, we reconstructed the cortical surface of each
participant using the Freesurfer software package (Dale et al., 1999).
These surfaces were then inflated and aligned to a standard spherical
surface to optimally superimpose the cortical folding pattern across
participants (Fischl et al., 1999). To define regions-of-interest (ROIs)
we used probabilistic cyto-architectonic maps, which were equally
aligned to the standard cortical surface. We defined motor-cortical
ROIs (Fischl et al., 2008) by combining the two maps for Brodmann
area 4 (BA4, rostral and caudal). The surface-based ROI was then
projected onto the individual gray–white matter and pial surface.
For each participant, we then selected all voxels that touched either
of these surface patches (or lay between the surface patches) to be
contained in the ROI. The resulting BA4 ROI contained on average
1290 voxels per hemisphere (SD = 209 voxels).

Random subspace method

To improve the reliability of the classification accuracies for the
classifiers of different dimensionality, we utilized a random sub-
space approach. From the voxels of the BA4 ROI, we drew repeated-
ly sets of 80 voxels (2000 drawings). These subsets were then
submitted to the classification analysis (see Reduced-dimensional
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linear classifier section), and the classification accuracies over all 2000
drawings were averaged. To generate the comparisons curves for
known distributions, we selected for each drawing of the real data all
simulation runs with the same accuracy for the full-dimensional classi-
fier. The predicted accuracy curve for each drawing was the average
performance of the lower-dimension classifier for these simulation
runs, and the overall predicted accuracywas the average of these curves
across the 2000 subspace drawings.

Projection of patterns into the feature space

Finally, to visualize the arrangement of different conditions in esti-
mated feature space (f̂ k), we can project the measured mean patterns
onto the first d eigenvectors ofΣB

⁎. For thiswe can arrange the eigenvec-
tors as columns into the matrix W(d). The projected values then are

f̂ k ¼ W dð ÞT∑−1=2
W μ̂ k: ð10Þ

In this projected space, the Euclidian distance between group
means corresponds to the Mahalanobis distance in the original
space, and the between-condition variability along each of the feature
dimensions corresponds to the eigenvalues. To compare feature
spaces across multiple participants, we aligned the different projec-
tions for scaling, rotation and translation using Procrustes analysis
(Schönemann, 1966).

Results

Simulation result

To establish the validity and sensitivity of the method, we simulated
neural data for an experiment with K = 4 conditions. We created data
sets for which the underlying feature space had either D = 1, 2, or 3 di-
mensions. The feature vectors for each condition were generated by
drawing from a D-dimensional normal distribution. We also randomly
generated D random pattern components with variability σa

2 (see
Generation of simulated data section). The simulated activity patterns
resulted from weighting each random pattern component by the value
of the corresponding feature and adding independent noise for each
trial (Eq. (1)). Over the 10,000 simulation runs for each dimensionality,
we systematically changed the variability of the pattern components
(σa

2), such that we could select examples with different dimensionality
that had comparable classification accuracies for the full classifier.

The generated data was then subjected to the proposed cross-
validated classification analysis (see Reduced-dimensional linear
classifier section), reserving 1/8 of the data as a test set, and repeating
the process 8 times. Each time, we used two reduced-dimensional clas-
sifiers (1- and 2-dimensional), and one full classifier (3-dimensional).
Each classifier used the training set (subset of data from 7 runs) to de-
termine the d (1, 2, or 3)most important dimensions, and then predict-
ed the condition for each pattern in the test set (subset of data from a
single run), using only these dimensions. For the chosen classifiers, we
expected that the cross-validated accuracy for the different simulations
would be highest if the dimensionality of the classifier matched the di-
mensionality of the underlying data.

As can be seen in Fig. 3 this was indeed the case. For data generated
from a one-dimensional feature space (light gray line), the one-
dimensional classifier showed better accuracy than the 2- or 3-
dimensional classifier. The latter two performed worse, as they over-fit
the data: the additional dimensions contained random noise, and there-
fore induced classification errors. Averaged over all the simulation runs
with a one-dimensional representation, the one-dimensional classifier
had the highest accuracy in 68% of the cases, followed by the two-
dimensional (18%) and the three-dimensional classifier (14%).

Similarly, the 2- and 3-dimensional data sets were – on average –

best classified using a 2- and 3-dimensional classifier, respectively. How-
ever, the accuracy curves (middle and dark gray line) were much more
similar to each other with only 41% of these simulation runs having the
best accuracy for the correct classifier. The main reason for this overlap
is that the 4 conditions are not evenly spaced in the 3-dimensional fea-
ture space. Rather, due to their random placement, the first two dimen-
sions containedmost of the between-condition variance. In other words,
four randomly placed points in 3d space can be relatively well described
by a plane. The eigenvalues of the true between-category variance–
covariance matrix (∑B⁎, Eq. (7)) indicate how much variability each di-
mension, in descending order of importance, explains. The normalized
eigenvalues were [1 0 0] for the one-, [1 0.29 0] for the 2- and [1 0.39
0.09] for the 3-dimensional simulation. This means that for 4 randomly
placed conditions in a 3-dimensional feature space, the third dimension
comprises only 9% of the between-class variance contained in thefirst di-
mension, and only 0.09 / (1 + 0.39 + 0.09) = 6% of the total variance.
Therefore, adding a third dimension to the classifier does not substantial-
ly improve classification accuracy. To determine the classification curve if
all dimensions are equally important, we added a simulation in which
the four conditions were evenly distributed in 3-dimensional feature
space (eigenvalues [1 1 1], see Generation of simulated data section).
For this arrangement, the advantage of the 3-dimensional classifier
(Fig. 3, thin black line) over the 1- or 2-dimensional classifier became
much clearer.

Comparing full accuracy curves

The results in the preceding section indicate that we can, in princi-
ple, identify themost likely feature space dimensionality of a given pop-
ulation activity by determining the dimensionality of the best classifier.
While this method appears to work well for distinguishing between
one-dimensional and higher-dimensional representations, the simula-
tions also show that the 2- and 3-dimensional representations cannot
be distinguished reliably. However, Fig. 3 indicates that that there is
substantial information in the full accuracy curves that is not reflected
in the maximum. For example, the accuracy curves for the 2- and
3-dimensional representations do not only differ in the likely dimen-
sionality of the maximum, but also in the expected accuracy of the
one-dimensional classifier for a given accuracy of the full classifier. Fur-
thermore, the randomly and evenly spaced representations differ only
in the accuracy of the 1-, and 2-dimensional classifier. Thus, we prefer
to display and evaluate the full accuracy curves, rather than just their
maximum. For this approach it is necessary to generate simulated accu-
racy curves under a specificmodel of howmuch each feature dimension
contributes to the discrimination between conditions (i.e. the eigen-
values of the true between-group covariance matrix, see Simulation
result section). Through iterative improvements of the feature space
model, this approach allows the researcher, in principle, to determine
the most likely distribution of information across feature dimensions.

Random subspace approach

A second way to improve the sensitivity of the method is to com-
bine the output of multiple classifiers, each trained on a slightly dif-
ferent random subset of the voxel in an area of interest. Whereas
each individual classifier is noisier than the one trained on all voxels,
their average performance is often more stable and reliable than the
single classifier (Rokach, 2010).

Typically, such a random subspace approachwould be performed on
a region of interest (ROI), for which we seek to determine the dimen-
sionality. To compare the random subspace approach with one that
simply uses all the data, we generated an ROI of 400 voxels with a 1-,
2- or 3-dimensional feature space, each with matched accuracy for the
full classifier. We then determined the ability of the set of classifiers
that were trained on all 400 voxels to determine the dimensionality of
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the underlying data. In 57.2% of the simulations the best performing
classifier matched the dimensionality of the underlying representation.

For the random subspace approach, we repeatedly drew subsets of
80 voxels without replacement from the 400 voxels, and averaged
the classification accuracy for the 1- to 3-dimensional classifier over
2000 draws. While the classifier based on the smaller subspace of
voxels had lower accuracy on average (61.3% vs. 70.6% for the full
classifier), the standard deviation of the average random subspace
accuracy was 20–30% lower than for the classifiers that use all the
data. Correspondingly, the percentage for simulation for which we
could correctly identify the dimensionality of the representation
increased to 61.2%. Thus, taking samples of smaller size from the
larger ROI and repeatedly running the classification analysis can be
beneficial for a more reliable assessment of the accuracy curve.

Voxel selection

The selection of voxels for decoding analysis requires caution, as the
validity of the analysis hinges critically upon the fact that any criterion
by which voxels are selected is independent of the data that is to be
decoded (the test data). This is also the case when we try to estimate
the dimensionality of representations using the proposed method.
Fig. 4 shows a simulation of the influence of voxel selection onto the ac-
curacy curves. Here we simulated a region with 534 voxels. For each
simulation run, we selected the 15% most informative voxels—i.e. the
voxels with the highest statistical value for an F-test across categories.
These voxels were then submitted to the dimensionality analysis. As
can be seen from Fig. 4, this approach leads us to believe that the repre-
sentation was 3-dimensional, no matter whether the true representa-
tion was 1-, 2-, or 3-dimensional. This effect arises because there will
be – among the selected voxels – many for which the high F-value re-
sults fromnoise. Because these voxelswill distinguish between the con-
ditions along randomly selected – and hence different – dimensions,
this will lead to a well-spaced arrangement of the conditions in feature
space.

If it is necessary to select voxels from weakly informative regions,
then this selection needs to be done within the cross-validation proce-
dure. The dashed line in Fig. 4 shows an additional simulation, in which
we selected the best 80 out of 534 voxels on each cross-validation run
separately. Importantly, the F-values, upon which the voxels were se-
lected, were calculated only on the training set. In this case, the dimen-
sionality analysis remains valid, with the highest accuracy observed
when the dimensionality of the classifier matched the dimensionality
of the data. To summarize, voxel selection can seriously bias the repre-
sentational analysis and should in general be avoided. If voxel-selection
becomes necessary because the statistical power is too lowotherwise, it
needs to be performed in a cross-validated fashion.

Representation of force levels (Experiment 1)

We then applied our method to two real data sets; chosen because
we had a strong a-priori hypothesis that the dimensionality of the un-
derlying feature space should differ between the two data sets. For the
first example, we chose a neural representation for which the feature
space should be relatively low-dimensional. To obtain this data set,
we recorded the activity patterns in the primary motor cortex when
participants pressed with all fingers of the hand at 4 different force
levels (see Representations of force levels (Experiment 1) section).
Many neurons in primary motor cortex increase firing rates with in-
creasing force levels (Evarts et al., 1983). We therefore expected that
the BOLD activity should also increase monotonically.

The exact dimensionality of force representations is unknown, how-
ever one may expect that the representation for the above task is
one-dimensional. Thiswould be the case if themotor systemachieves dif-
ferent force levels by scaling of activity of the same group of neurons. Im-
portantly, this prediction does not rest on the assumption that the BOLD

signal in M1 increases linearly with the force level (Dai et al., 2001). In-
deed, some authors have argued BOLD signal and force have a logarithmic
relationship (Dettmers et al., 1995, 1996a,b). A one-dimensional repre-
sentation only implies that all voxels scale their activity linearly with
the same latent feature, which in turn may be non-linear functions of
force. Furthermore, every voxel can have a different intercept and slope
with the hidden feature (and therefore even may show decreasing activ-
ity with force); it is only necessary that every voxel shows the same type
of non-linear relationship with force.

Alternatively, if higher force levels lead to increased recruitment
of new neuronal elements, the motor cortical activity patterns asso-
ciated with different force levels may occupy a higher dimensional
space. Thickbroom et al. (1998) reported that static force production
led to an increase in the recruitment of voxels along the central sul-
cus, whereas the average activity level of the activated voxels only
increased slightly. Simulating a representation in which the different
force levels differ in the number of activated voxels, but not in the
strength of the activation, results in an accuracy curve that lies –

for four different force levels – between the 3-dimensionally ran-
domly space and 3-dimensionally evenly spaced representations
(Fig. 3).

Fig. 5A shows an example of the contralateral hand area of an indi-
vidual participant. The hand-knob (Yousry et al., 1997) is clearly indi-
cated by the bend in the central sulcus. For each participant, the main
motor-cortical activity during the hand press was located close to this
landmark. As can be seen, the signal intensity of the pattern increases
with the amount of force, without the pattern changing its overall
shape. The group-averaged data confirms the monotonic increase of
the overall activity with force level (Fig. 5B). For the lower force levels
this increase was close to linear, whereas it saturated for higher force
levels. Thus, we found a force-BOLD relationship that lay between a lin-
ear (Dai et al., 2001) and logarithmic (Dettmers et al., 1996a) relation-
ship, with the logarithmic model fitting the data better than a linear
model.

Independent of the exact profile of the non-linearity, our method
tries to establish whether the activity pattern scales linearly with this
(possibly nonlinear) latent feature, or whether the pattern changes
qualitatively with increasing force. To generate the accuracy curves,
we defined an M1 ROI based on the probabilistic cytoarchitectonic
maps (see Basic data analysis section). Within this ROI we employed a
random subspace approach, each time sampling groups of 80 voxels.
The average accuracy curve across these random samples (2000 times
per subject, red line, Fig. 5C) was highest for the 1-dimensional classifi-
er, suggesting indeed that the activity patterns are (up to an intercept)
scaled versions for each other.

We then compared the empirical accuracy curves to simulated accu-
racy curves coming from a 1-, 2- or 3-dimensional representation, gener-
ated such that the classification accuracy for the full classifier matched
the real data (Fig. 5C, gray lines). This comparison showed that the accu-
racy for the 1-dimensional classifier was not as good as expected from a
truly 1-dimensional representation, (t(4) = −5.98, p = 0.004), but is
better than would be expected from a randomly-space 2-dimensional
representation, (t(4) = 3.08, p = 0.037). Most certainly, however, the
empirical accuracy curves were not consistent with a pure recruitment
hypothesis (Thickbroom et al., 1998). Such a representation should
have led to an accuracy curve with much poorer performance for the
one-dimensional classifier.

Thus we must conclude that the dimensionality of the representa-
tion lies between a 1- and a 2-dimensional representation, with more
variability explained by the first feature dimension than expected
from a random placement of force levels in a 2-dimensional feature
space. The deviation from a purely one-dimensional representation
reflects a slight qualitative change of the underlying spatial activity
pattern with force levels. Consistent with this conclusion, we found
that for 3 out of 5 participants the 2-dimensional classifier performed
better than the 1-dimensional classifier.
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To investigate the representation in more detail, we projected the
mean activity patterns for each condition onto the first two dimensions
of the representation (see Methods). This projection (Fig. 5D) shows a
highly consistent arrangement of the activity patterns across participants.
The first dimension simply orders the different force levels, consistent
with the overall increase in activity. The second dimension arranges the
points in a quadratic pattern, whereas the third dimension (not shown
here) arranges them in a cubic pattern (zig-zag) pattern. Thus, these
higher dimensions consistently captured the smaller non-linearities of
the scaling of the activity patterns in the nonlinear feature space.

In sum, our results indicate that the activity patterns in primary
motor cortex increase – to a first approximation – linearly with a latent
feature that, in turn, scales (at least for higher force levels) nonlinearly
with force. Our results are clearly not consistent with a recruitment hy-
pothesis—i.e. the idea that higher force levels activate more voxels, but
do no change the activity level of the activated voxels.

Representation of individuated finger presses (Experiment 2)

As an alternate example, we investigated the activity patterns elicited
by individual presses of the 5 fingers of the left and right hands (see the
Representation of individual finger presses (Experiment 2) section, and

also Diedrichsen et al., 2012). From a behavioral standpoint we know
that the participants are able to produce force with each individual fin-
ger, without pressing downwith the other fingers. For isometric presses
of the instructed finger of >2.3 N, the co-activation of the other fingers
was on average only 0.08 N. We have the strong a-priori hypothesis
that this behavior is controlled from the hand area of primarymotor cor-
tex, and that we therefore should find a full (i.e. 4-dimensional) repre-
sentation of these five behaviors.

Fig. 6A shows the activity patterns associated with each finger in
an individual participant. As expected from neurophysiological re-
sults (Schieber, 2002; Schieber and Hibbard, 1993), we found highly
overlapping patches of activity for the 5 fingers. Secondly, we ob-
served that the activity was highest for the ring finger, a finding
that held true for the average group data. However, we can also see
that the patterns did not only differ in intensity, but also in their spa-
tial shape: A thumb press led to more ventro-lateral activity, in con-
trast to more dorso-medial activation for the little finger (Indovina
and Sanes, 2001; Wiestler et al., 2011).

The accuracy curve (Fig. 6B) showed that the highest cross-validated
accuracy was observed for the 4-dimensional classifier. This was true in
the group mean, and also for 9 out of the 12 studied hemispheres.
These results show that, as expected, the motor cortex has a full
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representation of individual finger movements, i.e. that each finger press
is associated with a unique activation pattern. We then again compared
the obtained classification accuracy against the simulated counterparts,
based on the assumption that each finger is represented by a random, in-
dependent activation pattern inM1.While the empirical accuracy for the
one-dimensional classifierwas clearly lower thanwould be expected for a
one- or two-dimensional representation, the accuracy was also slightly
higher than would be expected from a randomly-spaced 4 dimensional
representation, (t(11) = 2.510 p = 0.029). Indeed, for the accuracy of
the one-dimensional classifiers the simulation based on a 3-dimensional
representation provided the best match.

This finding indicates that the first dimension captures more
between-finger variance than would have been expected from a ran-
dom spacing of finger activation patterns in feature space. Indeed,
even in the raw patterns one can observe that the activity patterns
for middle, ring and little fingers were quite similar to each other
(Fig. 6A). The systematic arrangement can be seen clearer when
projecting the average activity patterns onto the first 2 eigenvectors
of the extracted feature space (Fig. 6C). While the thumb pattern is
quite distant to the other activation patterns, the ring, middle and lit-
tle fingers are located close together in feature space. This clustering
could be introduced either by similarity of the required muscular ac-
tivation patterns for individual finger presses, or could be related to
the natural statistics of movement—i.e. the fact that these fingers usu-
ally move together in the main grasping synergy (Ingram et al., 2008).

Overall, however, the dimensionality analysis reveals a full repre-
sentation of individuated finger movements. This stands in contrast
to the clearly reduced dimensionality in the case of different force
levels.

Discussion

The concept of latent feature spaces is a powerful tool to describe
neural population activity. These representational spaces are most
often defined in such a way that the observed activity of each element
of a population code (i.e. individual neurons for single-cell recording,
or cortical assemblies in the case of LFPs or fMRI) can be described by

a linear combination pattern components, each related to an underly-
ing feature (Naselaris et al., 2011). Feature spaces have been intro-
duced to investigate the temporal dynamics of population activity
during action preparation and execution (Churchland et al., 2007,
2012), or to investigate the semantic structure of visual representa-
tion in temporal cortices (Kriegeskorte et al., 2008b; Naselaris et al.,
2009).

Feature spaces can be abstract to a certain degree; their dimen-
sions do not necessarily represent known physical quantities. This
does not imply, however, that we cannot study the structure of
these spaces. A description on the level of feature spaces can provide
a concise characterization of the population activity and its dynamics.
Here we concentrate on one fundamental characteristic: the dimen-
sionality of the feature space. The dimensionality refers to the num-
ber of pattern components needed to describe the population
activity over a set of experimental conditions, i.e. the number of
non-zero eigenvalues of the true between-class covariance matrix.
The eigenvalues of the estimated between-class covariance matrix,
however, are unfortunately not directly informative: Due to noise,
there will always be K-1 non-zero eigenvalues for K experimental
conditions. To address this problem we suggest here to use a
cross-validated classification method. By comparing the classification
accuracy of linear classifiers each based on different numbers of di-
mensions, the method estimates how many eigenvectors are neces-
sary to explain the meaningful variability in the data (i.e. variability
that distinguishes the conditions of interest).

A very related multivariate analysis technique is the evaluation of
the (dis-) similarity structure of the representations, as proposed by
Kriegeskorte et al. (2008a,b). As the method proposed here, represen-
tational similarity analysis enables us to evaluate the structure of the
feature space without needing to pre-specify the meaning of the dif-
ferent dimensions. The use of multi-dimensional scaling (MDS) also
allows the visualization of a low-dimensional projection of the fea-
ture space, very much as done here (see Eq. (10), Figs. 5D, 6C). How-
ever, the proposed method provides an important addition. It
determines how many dimensions are needed to faithfully represent
the empirically observed neural activation patterns for a given task
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over a cortical region, and therefore allows us to decide between dif-
ferent classes of representational hypotheses.

It should also be clear from Fig. 2 that dimensionality is not a cate-
gorical concept; rather, it is possible to see a gradual transition from
cases where most of the information is carried by the first few dimen-
sions (Fig. 2B) to cases where the information is distributed across
many dimensions (Fig. 2C). The normalized eigenvalues of the true
between-class covariance matrix reflect the distribution of conditions
in feature space. If all dimensions have the same eigenvalue, then the
different experimental conditions are separated evenly among all di-
mensions of feature space (Fig. 2C), implying optimal encoding of the
underlying variable in the population activity. Although the eigenvalues
of the true between-class covariancematrix cannot be directly estimat-
ed, we can recover some of the information by comparing the full accu-
racy curves of the data (from classifiers of different dimensionality) to
those obtained by simulations with varying arrangements of the condi-
tions in feature space (see Comparing full accuracy curves section).

We then applied the methods to two examples of motor cortical ac-
tivation patterns. First, we found that activity patterns of reflecting dif-
ferent force levels were relatively well classified by a one-dimensional
classifier. Thus, to a first approximation, the activity patterns differ
only in their relative signal intensity. This finding clearly contradicts
the hypothesis that increasing force levels are mostly characterized by
an increasing number of activated voxels (Thickbroom et al., 1998).
This hypothesis would have predicted very poor accuracy for the
one-dimensional classifier. While the activity patterns increased nearly
linearly with the latent feature, the latent feature itself was not a linear
function of force. Rather, we found that the relationship between force
and latent feature was linear for the lower force levels, but saturated for
the highest force level.

Secondly, we found that the hand area of motor cortex has a
full-dimensional representation of individuated finger movements. A
4-dimensional classifier performed better than lower dimensional clas-
sifiers in distinguishing between the activity patterns for each of the 5
fingers. This indicates that each finger press is associated with its own
unique pattern of activity. This was to be expected, given that the pri-
mary motor cortex is responsible for producing individuated finger
movements (Porter and Lemon, 1993). Our results, however, also indi-
cate that the fingers are not represented in terms of exclusive and high-
ly separable patches. This would have resulted in an even spacing of the
fingers in feature space, and hence to a poor performance of the
lower-dimensional classifiers. Rather, our data suggests that a consider-
able amount of between-finger information is contained in the first two
dimensions of the feature space. This may result from the fact that the
movements of the ring, middle and little fingers are represented very
closely together in feature space, as these three fingers most often act
together during naturalmovements (Ingram et al., 2008) and show sig-
nificant co-activation at higher force levels (Zatsiorsky et al., 1998).

These findings may not be surprising by themselves; but they
show that the proposed method produces clearly interpretable re-
sults when applied to real neuroimaging data. Given this validation,
we believe that the method can now be applied in experiments
with more complex actions or stimuli. For example, we may wish to
know which regions represent more complex variables, such as the
ordering of finger presses in a sequential task, the emotional content
of facial expressions, or the identity of visual objects. For such stimuli,
one can often find a number of regions that exhibit above-chance
classification accuracy. One problem with the interpretation of such
findings is that one cannot be sure whether the region represents
the experimental conditions by associating each condition with a
unique pattern (a full-dimensional representation), or whether it
simply scales the activity with a single latent variable. While careful
experimental design should ensure that the experimental conditions
do not differ dramatically on possibly confounding dimensions, such
as in the brightness of the stimulus or the difficulty of the task, perfect
matching of the conditions can never be achieved. For example,

different actions always differ slightly in the required effort, and
while one could try to equate these differences, this can only be
achieved by introducing differences in other variables. Ultimately,
even with the best design, one can never rule out convincingly that
the classification was not performed on a single latent (possible
unobservable) variable. The new method now offers the possibility
to distinguish in general between full-dimensional representations,
and those in which activity simply scales with a few latent variables.
While it is also theoretically possible to test for specific dependencies
by regressing out the confounding variable of the data prior to classi-
fication, our proposed technique is more versatile, as it can test whole
classes of alternative hypotheses.

Apart from evaluating the alternative hypothesis that above-chance
classification performance arises from a low-dimensional (and hence
artifactual) representation, we believe that themethodwill also be use-
ful to determine the structure of more complex feature spaces. For ex-
ample, we do not know how the primary motor cortex represents
(and controls) complex hand movements. While it has been hypothe-
sized that hand movements are assembled by a finite set of synergies
(Gentner and Classen, 2006), the number, shape, and neural implemen-
tation of these hypothetical building blocks remain unknown. To study
such representation, it will be necessary to acquire neural data from a
broad range of handmovements. The ultimate goal is to build quantita-
tive models, which can explain and predict the neural data from such
condition-rich designs (Kriegeskorte et al., 2008a). Such models how-
ever, require an educated guess about the number and types of features
an areamight code for (Kay et al., 2008). In this process, ourmethod can
provide the first step by determining the number of necessary dimen-
sions and the distribution of information across these dimensions.

While we focus here on the analysis of fMRI data, similar tech-
niques can also be applied to neural population data from other mo-
dalities, such as recordings of local field potentials or data from
multi-electrode arrays. In the process of building quantitative models
of neural population activity, the proposed method fills an important
gap in the neuroscientific toolkit. On the one hand it goes beyond
purely data-driven approaches (such as principle component analysis
or other methods for dimensionality reduction), as it tests specific hy-
potheses about the dimensionality of the underlying feature space.
On the other hand, it does not require the specification of the precise
form of the underlying feature dimensions and their (possibly
nonlinear) relationship to physical variables.
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