1 Mechanisms of responsibility assignment during redundant reaching

2 movements

- 3
- 4
- 5 Alexandra Reichenbach¹*, Angela Costello¹, Peter Zatka-Haas¹, and Jörn Diedrichsen¹
- 6 ¹Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- 7
- 8 Running head: Online control of redundant movements
- 9
- 10 * Correspondence:
- 11 Alexandra Reichenbach
- 12 Institute of Cognitive Neuroscience, University College London
- 13 Alexandra House, 17 Queen Square
- 14 London WC1N 3AR, United Kingdom
- 15 Phone: (44) 20 76795570
- 16 Email: a.reichenbach@ucl.ac.uk
- 17
- 18

Abstract

20 When the two hands act together to achieve a goal, the redundancy of the system makes it necessary to 21 distribute the responsibility for error corrections across the two hands. In an experiment in which 22 participants control a single cursor with the movements of both hands, we show that right-handed 23 individuals correct for movement errors more with their non-dominant left than with their right hand, 24 even though the dominant right hand corrects the same errors more quickly and efficiently when each 25 hand acts in isolation. By measuring the responses to rapid cursor and target displacements using force 26 channels, we demonstrate that this shift is due to a modulation of the feedback gains of each hand, 27 rather than to a shift in the onset of the corrective response. We also show that the shift towards left-28 hand corrections is more pronounced for errors which lead to adaptation (cursor displacements) than 29 for perturbations which do not (target displacements). This finding provides some support for the idea 30 that motor system assigns the correction to the most likely source of the error to induce learning and to 31 optimize future performance. Finally, we find that the relative strength of the feedback corrections in 32 the redundant task correlates positively with those found for the non-redundant tasks. Thus, the 33 process of responsibility assignment modulates the processes that normally determine the gains of 34 feedback correction, rather than completely overwriting them.

35

36

37 Keywords

38 Reaching movements, redundancy, online corrections, visual perturbations

40

Introduction

41 Human movements often involve a number of effectors or joints. When reaching for an object, we 42 normally use a combination of trunk, shoulder, elbow, wrist, and finger movements to efficiently 43 achieve our goal (Bernstein 1967; Diedrichsen et al. 2010). Indeed, one may argue that reaching 44 movements that are limited to shoulder and elbow joints, are only found in the laboratory setting, 45 where additional degrees of freedom are constrained to allow for a simplified kinematics and dynamic 46 analysis (Bhushan and Shadmehr 1999). In natural, free movements, most goal positions can be 47 achieved using a range of different joint combinations (Cirstea and Levin 2000). Given this natural redundancy, motor commands have to be distributed across effectors. Furthermore, errors that occur 48 49 during the movement in one joint can be compensated for by adjustments in a combination of other 50 joints (Kurtzer et al. 2008). Thus, the motor system also needs to distribute responsibility for correcting 51 movement errors across the involved effectors.

52 How does the motor system solve this problem? One possibility is that the motor system 53 distributes the correction in such a way that it optimizes the performance for the *current* movement. 54 This can be achieved by using a control policy (Todorov and Jordan 2002) that minimizes the influence of 55 signal-dependent noise and the overall effort (Harris and Wolpert 1998; O'Sullivan et al. 2009). This 56 leads to solutions in which the faster and more accurate effectors contribute more to the correction 57 than the slower and less accurate ones. Alternatively, the motor system may assign the error to the 58 joints according to their probability of having caused the error, thereby adapting the presumably 59 maladapted joints and improving *future* performance of the whole system. This solution would require a 60 dedicated mechanism that assigns the error across effectors.

61 White & Diedrichsen (2010) studied the process of responsibility assignment using a bi-manual reaching task. In the redundant version, participants had to hit one target with a single cursor, which 62 was displayed at the spatial midpoint between both hands. In this condition, a deviation of the cursor 63 64 from its desired path could have been caused by either the left or the right hand, or any combination of 65 the two. Accordingly, any combination of left or right hand movements could also correct for the error. 66 In this redundant situation, the motor system has to assign the responsibility to correct for the error to 67 the involved effectors. In the non-redundant version of the task, each hand moved independently to a 68 separate target. Errors therefore had to be corrected with the hand that encountered the error. In the 69 latter condition, corrections with the dominant right hand were faster and more precise (Elliott et al.

70 1999; Mieschke et al. 2001; Todor and Cisneros 1985). However, in the redundant task, right-handed 71 participants corrected for visually induced errors (cursor rotations) more with their non-dominant, left 72 hand. This suggests that the motor system assigned a larger portion of the correction to the hand that 73 more likely caused the error (the noisier left hand). This would have the advantage that the adaptive change predominantly occurs in the appropriate effector. In favor of this interpretation, the authors 74 75 found a clear correlation between the distribution of corrections and the distribution of adaptive 76 changes on the next trial. In the present study, we now address three important questions about the 77 mechanism that underlies the assignment of responsibility for error corrections during redundant 78 movements.

79 First, we ask whether the process of responsibility assignment acts by modulating the time that 80 each effector needs to respond to the error, or whether it changes the feedback control gains, i.e. the 81 strength of the correction. While both would lead to a shift in the distribution of the overall correction in 82 the end of the movement, they would imply different neural mechanisms. The gradual nature of the 83 visual perturbation (cursor rotation) used by White & Diedrichsen (2010) does not allow 84 disentanglement of the temporal onset of a correction from its gain. In the present experiment, we 85 therefore displaced the visual cursors laterally at a specific time point during the first half of the 86 movement (Franklin and Wolpert 2008; Sarlegna et al. 2003; Sarlegna et al. 2004). To further improve 87 the measurements of the early corrective movement, we used "force channel" trials (Smith et al. 2006), 88 in which the reaching hands were constrained on a straight path to their respective targets. The onset 89 time and strength of the corrective action could therefore be determined from the force participants 90 exerted against the wall of the channel (Franklin and Wolpert 2008).

91 The hypothesis that the error is assigned to the most likely cause of the error (the non-dominant 92 hand) raises a second question. This assignment strategy certainly only makes sense for errors that may 93 be caused by internal noise or mis-calibration of the visuomotor system, and therefore actually require 94 learning (Diedrichsen et al. 2005). By contrast, one would expect that any error that does not require an adaptive change should simply be corrected in the most effective manner, i.e. predominantly with the 95 96 dominant hand. White & Diedrichsen (2010) compared visual rotations of the cursors, i.e. internally 97 attributed errors that lead to strong adaptation responses, to displacements of the visual target 98 (Goodale et al. 1986; Prablanc and Martin 1992), i.e. externally attributed errors that do not lead to 99 visuomotor adaptation. While they found no difference in responsibility assignment in these two cases, 100 the finding is tempered by the fact that the cursor rotations and target displacements differed in their

101 temporal dynamics (gradual vs. abrupt). Here, we reinvestigate this question using abrupt lateral 102 displacements of the visual cursor instead of cursor rotations. This allowed us to directly compare 103 corrective movements in response to these two types of errors, because both perturbations had 104 precisely defined temporal onsets, comparable time courses, and the same magnitude.

105 Finally, we asked how responsibility assignment in redundant tasks interacts with the 106 mechanism that determines the feedback gains in non-redundant tasks. One possibility is that the 107 principles that determine the responsibility assignment in the redundant case are separate from the 108 principles that determine the feedback gains for both hands in the non-redundant tasks. This hypothesis 109 predicts that the bimanual correction asymmetry in the redundant task is either not correlated with the 110 correction asymmetry in the non-redundant task, or negatively correlated. The latter case would arise if 111 high variability in the left hand would lead to lower feedback gains in the non-redundant task (Todorov 112 2005), but also to higher gains in the redundant task, as the left hand becomes the more likely cause of 113 the error. Alternatively, the process of responsibility assignment may add to the existing underlying 114 feedback gains for the left and right hand. It would therefore reflect a compromise between optimizing 115 the performance on the current trial, and assigning the correction to the most likely cause of the error. 116 This hypothesis predicts that the correction asymmetries in the redundant and non-redundant tasks 117 correlate positively across participants.

Material and Methods

120 **Participants**

Thirty-one neurologically healthy right-handed volunteers (experimental group 1: 19 participants, 20-36 years, 7 female; experimental group 2: 12 participants, 20-28 years, 6 female) were recruited from an internal experiment database. All participants provided written informed consent prior to testing and were paid as compensation for their time expense. They were naïve to the purpose of the experiment and debriefed after the experimental sessions. The research ethics committee of University College London (United Kingdom) approved all experimental and consenting procedures.

127 Apparatus & Stimuli

128 Participants were seated comfortably in front of a virtual environment setup, leaning slightly forward 129 with their forehead supported by a forehead rest. They made 15cm reaching movements away from 130 their body while holding onto a robotic manipulandum (update rate 1kHz, recording of position and 131 force data at 200Hz) with each hand. Movements were performed involving shoulder, elbow, and wrist 132 movements in the horizontal plane at chest height. A mirror that was mounted horizontally above the 133 manipulanda prevented direct vision of the hands, but allowed participants to view a visual scene on an 134 LCD monitor (update rate 60Hz). The visual display was arranged such that stimuli appeared to be 135 exactly in the depth-plane on which the hands moved. The movements were instructed using starting 136 boxes (unfilled white squares, 0.5cm size, 6cm to the left and right from body midline) and target 137 box(es) (unfilled white squares, 1cm size). Fixation had to be maintained on a white fixation cross 138 (0.5cm), which was located in between the target boxes. The hand positions were represented by 139 unfilled white circles (cursors, 0.3cm diameter) located vertically above the real positions of the hands. All visual stimuli were displayed with a time delay of 68±5 ms. 140

141 Visual perturbations

We applied two types of visual perturbation during uni-manual and bi-manual reaching movements. The perturbations occurred once the average position of the two hands had moved 15% of the forward distance to the target(s). One perturbation type consisted of a 2.5cm displacement of the visual cursor in lateral direction (defined as the x-direction) either to the left or to the right (cursor displacement, CD). The other perturbation type consisted of a 2.5cm displacement of the visual target in the lateral direction either to the left or to the right (target displacement, TD). The necessary correction magnitude

6

- for both perturbation types was equal since task success was defined in visual space. Only the direction
- of correction was opposite, i.e. a target displacement to the right caused a corrective response to the
- right while a cursor displacement to the right caused a corrective response to the left, and vice versa.
- 151 Both perturbations could easily be detected and participants were informed about their occurrence
- 152 before the experiment started.

153 *Reaching conditions*

We used two non-redundant conditions ("uni-manual" and "two-cursor") and one redundant condition ("one-cursor"). The reaching conditions were blocked, and participants were informed before each block which kind of reaching movements they were supposed to perform.

Uni-manual (UM): Non-redundant uni-manual reaching movements were executed with either the left or right hand to a single target, while the other hand was static at its starting position. The target was located 15cm directly ahead of the starting position of the respective hand. Either the target or the cursor could be displaced to the left or to the right. Only participants from experimental group 1 were tested on this condition, because we did not expect further insights from testing more participants on this condition.

163 Two-cursor (TC): Participants executed bi-manual reaching movements, where each hand was 164 associated with its own cursor, yielding non-redundant movements. The cursors were located above 165 each hand, and each cursor had to reach its own target, which was located 15cm directly ahead of the 166 respective starting positions. Both the left and right cursor or target could be displaced in independent 167 directions (but at the same time), yielding 3 perturbation conditions: (a) a single perturbation was 168 applied either to the left or right hand; (b) symmetric perturbations occurred, such that both hands had 169 to respond with inward- or outward corrections (only experimental group 1); (c) asymmetric 170 perturbations, such that both hands had to respond with leftward or rightward corrections. Only one 171 type of perturbation (cursor or target) occurred within one trial. Because we did not find any significant 172 differences between perturbation conditions, we averaged the results of all two-cursor conditions, 173 analyzing the behavior of each hand relative to its own perturbation only.

One-cursor (OC): Redundant bi-manual reaching with a single cursor presented on the screen, which
was located at the midpoint between the physical positions of both hands. Therefore, each hand
contributed to half of the cursor motion. The goal of the movement was a single target located at body

midline, 15cm ahead of the starting positions. As in the other conditions, either the target or cursor wasdisplaced laterally.

179 *Trial procedure*

180 Participants started a trial by moving the cursors into the starting boxes while keeping their eyes on the 181 fixation cross. After 800ms, the target box(es) appeared 15cm straight above the starting boxes, to 182 which participants were instructed to make fast and accurate reaching movements. In the one-cursor condition, the two cursors disappeared upon target appearance and a single cursor was displayed at the 183 184 spatial midpoint between the two hands. The trial ended when the hand velocity remained below 3.5 185 cm/s for 40ms. A trial was considered valid when reaching time was shorter than 800ms and maximum 186 velocity ranged between 50 and 80 cm/s. Valid trials with endpoint accuracy of at least 7mm 187 contributed a single point each for the overall score and were rewarded with a visual target "explosion" 188 and a pleasant tone. A running score was continuously displayed above the targets. Feedback about 189 invalid trials, successful reaches, and increase in score was given via a color scheme at the end of each 190 trial. Participants were encouraged to use this visual feedback to adjust their movements on the 191 following trials if necessary.

192 In half of the trials, a "force channel" restricted the movements for a sensitive read-out of the feedback 193 responses (Franklin and Wolpert 2008; Smith et al. 2006). Force data obtained with this method is more 194 sensitive to the detection of responses to perturbations than position data from free reaching trials. The 195 sensitivity is in the same range as velocity data with having the advantage that the force is measured 196 directly and does not have to be derived, thus no additional noise is introduced. The force channel was 197 implemented with a spring-like force of 7000 N/m applied in lateral direction, which guided the hands 198 on a straight path to the targets. In these trials, the cursor or target displacements were reversed 250ms 199 after the initial displacement in order to enable task success. In the other half of the trials, the target 200 and cursor displacement remained, such that the participants needed to correct for the perturbations.

201 Session procedure

An experimental session started with training blocks of all experimental conditions, but without force channel trials in order to keep the decrease in force responses as low as possible throughout the experiment (Franklin and Wolpert 2008). Training continued until at least 75% of trials produced by the participant were valid. The participants of experimental group 1 were tested for all reaching conditions in a blocked design with block order counterbalanced across participants. The one-cursor and both uni207 manual conditions were each tested in two blocks of fully randomized 48 trials each. Each block 208 contained 4 repetitions of the full permutation of all factors perturbation type (CD/TD/no perturbation) 209 x displacement (left/right) x force channel (yes/no). All two-cursor conditions were intermixed in six 210 two-cursor blocks, comprising 1/9 unperturbed trials, 2/9 two-cursor symmetric and asymmetric trials 211 each, and 4/9 single perturbation trials permuted with displacement (left/right) and force channel 212 (yes/no). Each of these blocks contained 48 fully randomized trials, leading to overall 8 repetitions per 213 condition. Participants were informed before each block whether the next block was uni-manual, one-214 cursor, or two-cursor. Participants of experimental group 2 were only tested for the one-cursor, two-215 cursor asymmetric, and two-cursor single conditions. Each of the 4 test blocks contained 80 trials, also 216 resulting in 8 repetitions per condition with an equivalent ratio of trial types as experiment 1. Within 217 each block, 24 one-cursor and 56 two-cursor trials were blocked with the order between these two 218 conditions counterbalanced across participants. Within the one-cursor and two-cursor sub blocks, the 219 order across trials was fully randomized.

220 Data analysis

Invalid trials (6%) were excluded from further analysis, as they did not meet the movement time (<
800ms) or speed (50-80 cm/s) criteria. For each condition and participant, we could average over 6 to 8
repetitions. Movement start and end time-points were defined as the velocity exceeding or falling below
2.5 cm/s for at least 40ms. All position and force traces were aligned temporally to the onset of the
visual perturbations, or the point in time when the perturbation would have occurred for unperturbed
trials. For all analyses, we took the display time delay (68±5 ms) into account.

227 To assess the size of the corrective responses, we measured the lateral forces exerted into channels 228 (perpendicular to the reaching direction, Fig. 1). A measure of correction strength for each hand was 229 obtained by taking the difference between the force correcting for leftward displacements and the force 230 correcting for rightward displacements. This subtraction automatically removed any constant forces in 231 the channel that were caused by the biomechanical properties of the arm and robot. To obtain a time-232 averaged single measure for each hand and correction type, we averaged the force difference in the 233 time interval from 180 to 330 ms after perturbation onset (CorrectionStrength). Additionally, we 234 calculated the size of the final correction on trials without force channels. For this measure, we also 235 used only the component in the direction of the perturbation: the correction in lateral direction at the 236 end of the movement. Here, we averaged over leftward and rightward corrections of the same hand, in 237 each case coding the expected response as a positive value. Thus, a correction with an extent of 25mm

238 constitutes a full correction for the perturbation. The onset time of the corrective movement was

assessed using only the force channel trials, as this data provides the most time sensitive information

about corrections. For each subject and condition, we applied t-tests between the force traces of all

241 leftward and rightward corrections until at least 4 consecutive tests revealed differences on a

significance level of p < .05. The time stamp of the first of those 4 consecutive tests was taken as onset

243 time.

As the interest of this study focused on the differences between redundant and non-redundant

245 movements, the main comparisons are between the one-cursor and two-cursor conditions. Whenever

the goal of the analysis was to confirm hypotheses based on the results of previous studies, we

247 computed one-sided t-tests according to these hypotheses. For demonstrating novel effects or

248 interactions, we computed two-sided t-tests or repeated measures ANOVAs. Corrections for multiple

comparisons were performed using Bonferroni corrections where necessary. *P* values smaller than .05

are reported as significant. All values reported are mean values across participants with their respective

standard deviations unless stated otherwise.

253

Results

254 Errors in the redundant task are mostly assigned to the left hand.

All participants showed fast movement corrections that specifically counteracted the displacement of cursor or target: When a cursor was displaced to the right, the hand(s) responsible for the cursor's movement pressed leftwards into the channel. By contrast, when a target was displaced to the right, the hand(s) controlling the cursor to that target pressed rightward into the channel. Figure 1 illustrates the difference in force between leftwards and rightward displacements, in such a way that positive values indicate a corrective response in the expected direction. In all conditions, the feedback correction began around 200ms after the visual perturbation.

262 <insert figure 1 about here>

263 The amplitude of the corrective response, however, varied substantially between hands and conditions.

264 For the non-redundant reaching conditions (two-cursor and uni-manual), the forces were usually higher

265 for the right hand. To quantify this observation, we averaged the force difference between

displacements to the left and right over the time interval from 180 to 330 ms after the visual

267 perturbation (*CorrectionStrength*). We then used the difference in strength between the hands (right

268 hand *CorrectionStrength* subtracted from left hand *CorrectionStrength*) as our measure of hand

asymmetry (Fig 2).

270 <insert figure 2 about here>

- 271 In non-redundant conditions, the right hand exerted larger forces than the left hand. These differences
- were significant for both cursor displacement conditions (TC: t_{30} = 2.65, p < .01; UM: t_{18} = 2.55, p = .01).
- 273 For target displacements, the measured left-right hand differences were smaller and did not differ
- significantly from symmetry (TC: $t_{30} = 1.27$, p = .10; UM: $t_{18} = 1.04$, p = .16). Overall, however, these
- results demonstrate that the feedback gains in non-redundant reaching are higher for the right than forthe left hand.
- 277 In contrast, for the redundant one-cursor task, the left hand pushed stronger in the force channel than
- the right hand (Fig 1). The between-hand difference was significant for cursor (t_{30} = 2.84, p < .01), as well
- as for target (t_{30} = 2.30, p < .05) displacements. Importantly, a direct comparison of the asymmetry
- scores confirmed that participants indeed switched from stronger right-hand feedback gains for the

281 non-redundant condition to stronger left-hand feedback gains for the redundant condition (cursor

displacement: t_{30} = 4.75, p < .001; target displacement: t_{30} = 3.50, p < 0.01). This difference in the

distribution of feedback corrections was not associated with a systematic change in the kinematic

284 parameters during unperturbed movements (Table 1). Thus, we replicated the previously reported

285 change in the assignment of corrections (White and Diedrichsen 2010).

In summary, our results show that responsibility assignment in redundant movements is not solved by
each hand independently responding as strong as it would alone. Rather they indicate that feedback
corrections are assigned to the effectors in a different manner in the redundant situation.

289 <insert table 1 about here>

290 Responsibility assignment modulates feedback gain, not temporal onset

291 To further characterize the mechanism of responsibility assignment, we asked whether the shift in 292 correction asymmetry was caused by a difference in the temporal delay of correction between the 293 hands, or only by a difference in the magnitude of corrective force applied with each hand. All results 294 reported so far were manifest in the initial force with which the hands corrected for the sudden 295 movement error, i.e. the correction gain of each hand. In contrast, the onset time of the corrections did 296 not change systematically with condition (cf. Fig. 1). The mean onset time ranged from 162 to 194 ms, 297 and a repeated-measures ANOVA with the factors reaching condition (OC/TC/UM) x perturbation 298 (cursor/target) x hand (left/right) revealed neither a significant main effect, nor any interaction. Even 299 though the right hand responded slightly faster to cursor displacements in the two-cursor condition (t_{30}) 300 = 1.71; p < .05), this advantage neither reversed for the redundant condition, nor was there a difference 301 in correction onset in any other condition. Thus, the process of responsibility assignment results in a 302 modulation of the response gain of each hand, not in a difference in the reaction time with which each 303 hand responded to the perturbation.

304 Shift in correction asymmetry to the left hand when introducing redundancy is more

305 pronounced for cursor than for target perturbations

The reasoning behind our hypothesis that right-handed participants correct more with the left hand in the redundant task is that this less-skilled hand has a higher probability of having caused the error. This would be functional, as the hand that corrects more also adapts more (White & Diedrichsen, 2010). Thus, the shift to the left-hand would ensure that the most likely source of the error experiences 310 stronger adaptation. A prediction following from this hypothesis is that the shift towards the left hand 311 should be stronger for perturbations requiring adaptation of future movements (an error in the internal 312 representation of the motor system, thus most likely a systematic error) compared to perturbations not 313 leading to visuomotor adaptation (a change in the environment, thus most likely a random error).

314 To test this prediction, we first had to establish that there is indeed more adaptation for cursor 315 displacements than for target displacements. While it is well established that the *gradual* visual rotation 316 of the cursor leads to adaptation of the next movement (Diedrichsen et al. 2005), this has not been 317 shown for sudden cursor displacements as employed here. We therefore assessed the trial-by-trial 318 adaptation rates for both cursor and target displacements. For this analysis, we only used trials in which 319 a free-reaching trial with a perturbation was followed by another free-reaching trial. The initial 320 deviations from a straight path to the target in the follow-up trials (measured 200ms in the movement) 321 relative to the prior perturbations yielded the adaptation rates. A repeated-measures ANOVA confirmed 322 that cursor displacements caused higher adaptation rates than target displacements ($F_{1.16} = 9.84$, p < .01; 323 cursor: 0.13±0.23; target: 0.03±0.23).

324 Based on these results, our hypothesis would now predict that the asymmetry shifts more towards the 325 non-dominant left hand for on-line corrections to cursor displacements (internal error) than to target 326 displacements (external error). Indeed, the pattern of results (Fig 2) confirms this prediction: The on-line 327 correction asymmetry was biased more toward the left hand for cursor than for target displacements 328 $(t_{30} = 2.49, p < .05)$. Furthermore, the *shift* in correction asymmetry resulting from introducing 329 redundancy, i.e. the difference between the correction asymmetries in the redundant one-cursor and 330 non-redundant two-cursor condition, was significantly larger for cursor than for target displacements 331 $(t_{30} = 3.18, p < .01).$

The asymmetry pattern found in the early corrections was sustained until the end of the movements, as visible in the free reaching trials without the force channel. In these trials, the spatial amplitude of the correction at the end of the movement was larger for the right than for the left hand in all nonredundant conditions. For corrections to cursor displacements the difference was significant (TC: t_{30} = 2.50, *p* < .01, LH: 13.6±6.0mm, RH: 15.8±5.7mm; UM: t_{18} = 2.10, *p* < .05, LH: 19.0±5.6mm, RH: 21.5±5.0mm). However, for corrections to target displacements the difference was weaker (TC: t_{30} = 1.00, *p* > .1, LH: 18.3±6.8mm, RH: 19.1±6.1mm; UM: t_{18} = 0.72, *p* > .2, LH: 20.9±7.8mm, RH:

339 21.7±6.2mm). Moreover, we found a similar effect for the endpoint accuracy for unperturbed

- 340 movements (Table 1). The accuracy was significantly better for the right than for the left hand, both for
- bi-manual two-cursor (t_{30} = 8.17, p < .001), and for uni-manual movements (t_{18} = 5.69, p < .001).
- 342 For the redundant movements, the correction effect reversed: The magnitude of end correction for
- 343 cursor displacements was significantly smaller for the right than for the left hand (t_{30} = 3.11, p < .01, LH:
- 344 20.5±10.0mm, RH: 14.4±7.1mm). Again, the difference failed to reach significance for the target
- displacements ($t_{30} = 0.72$, p > .2, LH: 13.8±10.2mm, RH: 12.7±8.1mm). For cursor displacements, the
- difference in the final amplitude between the left and right hand changed significantly from the non-
- redundant to the redundant condition (t_{30} = 2.81, p = .01). This shift was not significant for target
- displacements (t_{30} = 1.12, p > .2). Finally, the *shift* in correction asymmetry resulting from introducing
- redundancy was significantly larger for cursor than for target displacements (t_{30} = 4.53, p < .001).
- 350 Therefore, the pattern of correction amplitudes at movement end closely resembled the pattern found
- in the early corrective movements in the force channels.
- 352 Taken together, our results argue that responsibility assignment shifts the main weight of correction
- towards the left hand for redundant tasks, and that is does so especially for perturbations that lead to
- 354 strong visuo-motor adaptation. In contrast, we found smaller shifts in asymmetry for target
- displacements, for which adaptation rates were much lower.

Responsibility assignment for redundant movements modulates, rather than replaces, non redundant feedback gains

358 Finally, we sought to determine how the mechanism of responsibility assignment for redundant 359 movements interacts with the mechanism that determines the gain of feedback responses for non-360 redundant movements. We considered two possibilities: First, it could be that the feedback corrections 361 for non-redundant and redundant movements are determined following two completely different 362 principles. During non-redundant movements, each hand would show a feedback gain that reflects the 363 accuracy of this hand. For example, participants with a large difference in accuracy between hands 364 would exhibit larger feedback gains for the dominant right than the non-dominant left hand as 365 compared to more ambidextrous participants. For redundant movements, those participants would 366 assign responsibility preferentially to the noisier left hand. Following this idea, we would expect that a 367 person who exhibits stronger feedback responses with the right than with the left hand during non-368 redundant tasks, should show a preference for the left hand during redundant tasks.

369 Alternatively, responsibility assignment may add to the existing gains of the left and right hand by

- biasing the preference towards the non-dominant left hand, but not completely overwriting or reversing
- 371 the existing difference in feedback gains. In this case, we would expect that the correction asymmetries
- 372 for redundant and non-redundant movements correlate positively i.e. a person exhibiting stronger
- 373 feedback responses with the right than with the left hand during non-redundant tasks, would exhibit a
- 374 weaker preference for the left hand during redundant tasks.
- 375 Consistent with the second idea, we found significant positive correlations for both perturbation
- 376 conditions (Fig. 3 middle panel; cursor displacement: *r* = .42, *p* < .05; target displacement: *r* = .48; *p* <
- .01). This means that the existing correction asymmetry is shifted towards the non-dominant hand upon
- introducing redundancy. Thus, there seems to be an individual hand preference for corrections, which is
- biased towards the dominant hand in non-redundant movements, and shifted towards the non-
- dominant hand when redundancy is introduced.
- 381 If there were stable inter-individual differences in how the feedback gains for the two hands are set,
- then participants with a strong asymmetry for cursor displacement should also show a strong
- asymmetry in the same direction for target displacements. Indeed, the correlations in hand asymmetry
- between corrections to cursor and target displacements were strongly positive, both for redundant (*r* =
- .84, p < .001) and non-redundant (r = .86, p < .001) reaching movements (Fig. 3 top and bottom panel). It
- is noteworthy to emphasize that cursor and target displacements were randomly intermixed within each
- 387 block, while the reaching conditions were blocked, which might explain the more robust correlations
- 388 between error types. Overall, these findings show that there is a stable individual trait, which
- determines the relative feedback gains for the left and right hand that applies to all conditions.
- 390 Responsibility assignment then acts on top of the existing preference, depending on specific task
- 391 constraints and requirements by shifting the correction asymmetry towards the non-dominant hand.

392 <insert figure 3 about here>

394

Discussion

The present study served to further illuminate the mechanisms underlying the assignment of responsibility for movement corrections across different effectors in a redundant reaching task. Our results confirm previous reports that the dominant hand shows stronger feedback corrections than the non-dominant hand (Elliott et al. 1999; Mieschke et al. 2001; Todor and Cisneros 1985), and that this asymmetry reverses for redundant movements (White and Diedrichsen 2010).

400 Furthermore, we demonstrate here that the asymmetry change was not driven by different 401 onset times of the corrections between hands, but explained entirely by the feedback gains of the 402 corrective responses. The previous study (White and Diedrichsen 2010) found changes in both strength 403 and onset time; however, in this study the authors relied on kinematic measures relatively late in the 404 movement. In contrast, our current study was specifically designed to detect the earliest possible 405 responses to visual perturbations using rapid spatial displacements of cursor and target, and force 406 channel trials to measure the reactive responses. This methodology allowed us to reliably disentangle 407 amplitude and onset time of the corrective movements. We clearly showed that the responsibility 408 assignment acted through a modulation of the gain of the response, leaving the onset times unchanged. 409 In that aspect, the assignment process is similar to the up- or down-regulation of the visual reflexes with 410 changes in model uncertainty (Franklin et al. 2012).

411 Based on the finding of White & Diedrichsen (2010) that the correction asymmetry in redundant 412 movements is positively correlated with the subsequently adapted behavior, we hypothesized that the 413 movement error and its correction is assigned preferentially to the more likely source of the error, the 414 less reliable non-dominant hand, in order to adapt specifically this effector. In favor of the hypothesis, 415 we found that the correction asymmetry is indeed more pronounced for internally attributable errors, 416 for which an adaptation would be functional, than for externally attributable errors. Thus, the 417 visuomotor system may strive to optimize not only current, but also future performance by 418 preferentially adapting the presumably mis-calibrated joint. However, we also found a weaker, but still 419 significant shift from stronger right-hand to stronger left-hand corrections for target displacement, for 420 which the motor system shows a much lower adaptation rate (see our results and also Diedrichsen et al. 421 (2005)). This low adaptation rate can be regarded as a sign that the motor system attributes these errors 422 to an outside and unstable source (Berniker and Kording 2008). Given this, it is unclear why it still shifts

the main work of the correction to the left hand. These results therefore indicate that our mainhypothesis is not the complete story yet.

425 We therefore considered here two alternative explanations for the leftward shift of corrections 426 during target displacements. First, using the left hand more for movement corrections in the redundant task may actually improve the performance on the current movement. This explanation is consistent 427 428 with the claim that the right hemisphere (and hence the left hand) is specialized for postural tasks and 429 endpoint corrections, whereas the left hemisphere (and therefore he right hand) is specialized for 430 dealing with the arm dynamics and online corrections during the movement (Sainburg and Kalakanis 431 2000; Schaefer et al. 2012). We think that this explanation is unlikely, however. First, in non-redundant 432 movements, the right hand was not only superior to the left hand in terms of the strength of the early 433 corrective response, but also in the final endpoint errors, which were consistently lower for the right 434 than for the left hand, both for perturbed and unperturbed trials. Additionally, the right-to-left shift in 435 the feedback gains from non-redundant to redundant movements was found already in the earliest 436 response, not only in the end of the movements when the left-hand advantage would arise.

437 Alternatively, it is possible that the stronger left-hand corrections in the redundant task serve to 438 optimize future, rather than current performance – even during target displacements. While visuomotor 439 adaptation rates were close to zero for this condition, adaptation is not the only learning mechanism that improves future performance (Huang et al. 2011). The non-dominant hand would profit more from 440 441 training corrective movements: The performance of the non-dominant hand is worse than the 442 performance of the dominant hand, as evident both in correction strength and end accuracy. Thus, skill-443 learning mechanisms could improve online corrections especially for the non-dominant hand. Whether 444 this or possible alternative explanations can account for the responsibility assignment for error 445 corrections remains a question for future research.

446 Our final result allows some insight into how the process of responsibility assignment interacts 447 with the processes that determine the strength of feedback corrections during non-redundant tasks. 448 First, we found that the right-left preference appears to be a stable intra-personal trait across all tasks 449 and error types. Naturally, the intrinsic properties of each effector remain relatively constant across all 450 conditions. We then found that the balance between the left and right hand corrections for the 451 redundant task was positively correlated with the differences in correction strength in the non-452 redundant bi-manual task. Therefore, the shift towards the non-dominant hands was achieved by 453 adding to existing differences in feedback gains, rather than by setting them using a completely different principle. Thus, the visuomotor system optimizes the movements in a redundant system by modulatingthe existing feedback mechanisms that normally determine the gain of the response.

In summary, our results confirm previous findings that right-handers correct more with their non-dominant left hand in a redundant task, while they otherwise show stronger corrections with the right hand. We further demonstrate that this change is caused by a shift in feedback gains, rather than by a change of the onset times of the corrective responses, and that it acts additively on existing leftright preferences. While the ultimate reason for the right-to-left hand shift for redundant movements remains to be further investigated, our results demonstrate that the preference for left-hand corrections in redundant movements is a replicable and stable phenomenon.

463 Acknowledgements

464 This research was supported by a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft

465 (DFG, RE 3265/1-1) to AR and a grant by the Biotechnology and Biological Science Research Council

466 (BBSRC, BB_J009458_1) to JD.

468	References
469	Berniker M, and Kording K . Estimating the sources of motor errors for adaptation and generalization.
470	Bernstein NA. The co-ordination and regulation of movements. Pergamon Press (Oxford and New York),
472 473	1967, p. 196. Bhushan N, and Shadmehr R. Computational nature of human adaptive control during learning of
474 475	reaching movements in force fields. <i>Biol Cybern</i> 81: 39-60, 1999. Cirstea MC, and Levin MF. Compensatory strategies for reaching in stroke. <i>Brain</i> 123 (Pt 5): 940-953,
476 477	2000. Diedrichsen J, Hashambhoy YL, Rane T, and Shadmehr R. Neural correlates of reach errors. J Neurosci
478 479	25: 9919-9931, 2005. Diedrichsen J, Shadmehr R, and Ivry RB. The coordination of movement: optimal feedback control and
480 481	beyond. <i>Trends Cogn Sci</i> 14: 31-39, 2010. Elliott D. Heath M. Binsted G. Ricker KL. Roy EA. and Chua R. Goal-Directed Aiming: Correcting a Force-
482	Specification Error With the Right and Left Hands. J Mot Behav 31: 309-324, 1999.
484	28: 14165-14175, 2008.
485 486	novel dynamics. <i>J Neurophysiol</i> 108: 467-478, 2012.
487 488	goal-directed movement. <i>Exp Brain Res</i> 180: 693-704, 2007.
489 490	Goodale MA, Pelisson D, and Prablanc C . Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. <i>Nature</i> 320: 748-750, 1986.
491 492	Harris CM, and Wolpert DM. Signal-dependent noise determines motor planning. <i>Nature</i> 394: 780-784, 1998.
493 494	Huang VS, Haith A, Mazzoni P, and Krakauer JW. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. <i>Neuron</i> 70: 787-
495 496	801, 2011. Kurtzer IL, Pruszynski JA, and Scott SH . Long-latency reflexes of the human arm reflect an internal
497 498	model of limb dynamics. <i>Curr Biol</i> 18: 449-453, 2008. Mieschke PE Elliott D. Helsen WE. Carson RG. and Coull IA Manual asymmetries in the preparation
499	and control of goal-directed movements. <i>Brain Cogn</i> 45: 129-140, 2001.
500 501	coordination. <i>PLoS Comput Biol</i> 5: e1000345, 2009.
502 503	target displacements. J Neurophysiol 67: 455-469, 1992.
504 505	Sainburg RL . Evidence for a dynamic-dominance hypothesis of handedness. <i>Exp Brain Res</i> 142: 241-258, 2002.
506 507	Sainburg RL, and Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. <i>J Neurophysiol</i> 83: 2661-2675, 2000.
508 509	Sarlegna F, Blouin J, Bresciani JP, Bourdin C, Vercher JL, and Gauthier GM . Target and hand position information in the online control of goal-directed arm movements. <i>Exp Brain Res</i> 151: 524-535, 2003.
510 511	Sarlegna F, Blouin J, Vercher JL, Bresciani JP, Bourdin C, and Gauthier GM. Online control of the direction of rapid reaching movements. <i>Exp Brain Res</i> 157: 468-471, 2004.
512 513	Schaefer SY, Mutha PK, Haaland KY, and Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. <i>Cereb Cortex</i> 22: 1407-1419, 2012.

- 514 Smith MA, Ghazizadeh A, and Shadmehr R. Interacting adaptive processes with different timescales
- 515 underlie short-term motor learning. *PLoS Biol* 4: e179, 2006.
- 516 Todor JI, and Cisneros J. Accommodation to increased accuracy demands by the right and left hands. J
- 517 *Mot Behav* 17: 355-372, 1985.
- 518 **Todorov E**. Stochastic optimal control and estimation methods adapted to the noise characteristics of
- the sensorimotor system. *Neural Comput* 17: 1084-1108, 2005.
- 520 **Todorov E, and Jordan MI**. Optimal feedback control as a theory of motor coordination. *Nat Neurosci* 5:
- 521 1226-1235, 2002.
- 522 White O, and Diedrichsen J. Responsibility Assignment in Redundant Systems. *Curr Biol* 2010.
- 523 Wilson ET, Wong J, and Gribble PL. Mapping proprioception across a 2D horizontal workspace. *PLoS*
- 524 ONE 5: e11851, 2010.
- 525
- 526

-	2	-
5	Z	1

Figure captions

528

529Figure 1Feedback corrections for the left and the right hand in response to (A) cursor530displacements and (B) target displacements in all reaching conditions. The traces depict the difference in531force exerted laterally in the channel between left- and rightward displacements of each hand, aligned532to the moment of visual perturbation (Oms). Note that the middle panels depict the data pooled over all533two-cursor conditions. The dashed lines mark the time period, over which the forces were averaged to534obtain the measure CorrectionStrength (180-330 ms). Shaded areas denote standard errors across535participants.

536

Figure 2 Asymmetry in feedback correction: Differences between hands (left – right hand) for corrective force responses (*CorrectionStrength*) to cursor displacements (A) and target displacements (B) for each reaching condition. Correction asymmetry > 0N represent left hand (LH) dominance, < 0N represent right hand (RH) dominance. Above the boxes: paired t-tests left vs. right hand (one-sided according to the hypotheses). Between the boxes: interaction between hands and reaching condition. * p < .05; ** p < .01.

543

Figure 3 Across-subject correlations of correction asymmetry between all bi-manual conditions.
The distributions of the correction asymmetries for the four conditions (error type x redundancy) are
illustrated in the corners with the same conventions as in Fig. 2, while their corresponding correlations
are depicted between these distributions.

B) target displacements

*

cursor displacement

target displacement

	peak velocity [cm/s]		y-distance [mm]		end accuracy [mm]	
	left hand	right hand	left hand	right hand	left hand	right hand
two-cursor	59.1±5.8	58.6±5.4	15.4±0.4	15.2±0.3	9.7±2.9	7.2±2.4
uni-manual	58.2±5.6	57.2±6.2	15.3±0.4	15.1±0.2	8.6±2.1	6.5±1.3
one-cursor	ne-cursor 58.5±6.2 57.1±		15.3±0.9 14.9±0.7 cursor ove		cursor overal	ll: 12.3±4.5

Table 1: Additional kinematic parameters for unperturbed movements (mean ± standard deviation)

The peak velocity of unperturbed movements differed neither between hands nor between reaching conditions. The y-distance of unperturbed movements, defined as the difference between start and end location of each hand in direction of the reach, differed between reaching conditions ($F_{2,36} = 3.83$; p < .05), but was neither influenced by hand ($F_{1,18} = 3.98$; p > .05) nor did reaching condition interact with hand ($F_{2,36} = 0.75$; p > .7). The end accuracy, defined as the absolute distance between the end position(s) of the cursor(s) and the corresponding target(s), was significantly better for the right than for the left hand for all non-redundant conditions (t > 5; p < .001). This measure was calculated on unperturbed movements only in order to distinguish reaching accuracy from the size of feedback corrections.