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Abstract

In this chapter, I discuss models that specify how neuronal population activity
relates to things that happen in the world - i.e., models of neuronal representations.
Focussing on the application to functional magnetic resonance imaging (fMRI) data,
I discuss current approaches to estimate and test such models. Encoding models
conceptualize representations in terms of sets of underlying features. We show that
these models ultimately test hypotheses about the distribution of activity profiles in
the space of the experimental conditions, and that the exact choice of feature sets
is to some degree arbitrary. Over-interpreting the significance of specific feature
sets constitutes an intellectual dead-end, termed here “feature fallacy”. The same
representational models can also be tested using a Bayesian approach, Pattern
component modelling (PCM), which abstract from the underlying features and
allows direct model evaluation. It also provides a powerful means to test more
flexible representational models, including models that consist of combinations of
different feature sets.

1 Introduction

Discovering how the human brain gives rise to intelligent behaviour is one of the most
daunting scientific challenges of our time. How do neurons represent and process infor-
mation? In trying to answer this question, many researchers have taken an experimental
approach, independently varying stimuli or task conditions, and repeatedly measuring the
activity of neurons. The responses of each neuron across experimental conditions form
a tuning function or activity profile. The goal of the approach is ultimately to discover
the mapping between the stimulus characteristics and the neuronal response (Wu et al.,
2006).
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Of course, neurons do not work in isolation. Therefore, representational models need
to be models of population codes, the activity of groups of neurons. Models of population
codes usually specify a class of activity profiles. For example, the responses of neurons
in M1 can be described as having cosine tuning to movement direction. While each
neuron has a different preferred direction (fires maximally for a different movement),
the underlying coding principle is the same across neurons. Together, the population
codes for movement direction in a distributed fashion (Georgopoulos et al., 1986). In this
chapter I am concerned with such models of population activity, and will review current
methods that can be used to specify and compare different models.

1.1 Measuring representations with fMRI

While many of the techniques discussed here are inspired by sensory neurophysiology, I
will concentrate on their application to fMRI data. The concept of an activity profile
can be generalized to the main measurement unit of fMRI, the voxel. A collection of
neighbouring voxels can be analyzed as a “population code” in the hope that this will
reveal something about the underlying neuronal representation. A number of different
analysis methods have been proposed to achieve this goal. I refer to these methods
collectively as representational fMRI analysis to distinguish them from the classical fMRI
approach, which simply asks whether a region increases its activity in response to a specific
task.

One may say that analyzing a “population code” across voxels in the hope to learn
something about the underlying neuronal population code is simply one step too far.
The activity measured in a single voxel combines activity of millions of neurons; any
information encoded in the activity differences within a voxel will be lost (Kriegesko-
rte and Diedrichsen, 2016). Furthermore, the sluggish hemodynamic response removes
nearly all useful temporal information from the signal. Finally, fMRI does not measure
neural activity directly, but through the indirect lens of vascular responses, with many
possible non-linearities and irregular spatial spread. Despite these severe limitations,
representational fMRI analysis has been successful in uncovering many known charac-
teristics of basic sensory and motor representations (Ejaz et al., 2015; Kay et al., 2008;
Norman-Haignere et al., 2015). With adequate caution, it is therefore possible to use
representational fMRI analysis to study higher-order regions of the human brain - al-
ready the approach has provided insights into the nature of spatial (Kim et al., 2017),
sequential (Yokoi et al., 2018), categorical (Kriegeskorte, Mur, Ruff, et al., 2008) and
semantic (Huth et al., 2016) representations. It is here that the power of representational
fMRI analysis lies, as many of these concepts are not easily accessible in animal models.

1.1.1 Describing activity profiles using features

The goal of representational fMRI analysis is to build models of the activation profiles of
groups of voxels across an ideally rich set of experimental conditions. An intuitive way
to characterize activity profiles is through a flexible combination of features, an approach
taken in so-called encoding models (Naselaris et al., 2011). For example, the responses
of voxels in V1 to natural stimuli can be captured using a feature set of Gabor functions
with different location, frequency and orientation (Kay et al., 2008). The responses of
voxels in primary auditory for complex sounds are well predicted by a model that uses
the power in specific frequency bands as features (De Angelis et al., 2017).
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Figure 1: Multiple levels of a representational model. The data (yp) are either fMRI
time-series or activity estimates from a lower-level analysis for each voxel p. Encoding
models (left column) model the data using a set of features M and feature weights wp.
Second-level parameters determine the distribution of feature weights and noise across
voxels. In PCM (right column) the distribution is directly specified on the activity profiles
up. The marginal likelihood of the data under a given model can be directly determined
by integrating out of first-level parameters (arrow)

To understand the relationship between different representational analysis methods, it
is useful to take a multi-level modelling view (Fig. 1). On the level of the data, the fMRI
data of the pth voxel, yp, is expressed as a function of a design matrix Z that captures the
temporally delayed and smoothed response to each event or condition, and an activity
profile up, which determines the size of the response to each of the experimental condition.
In encoding models, the activity profile is then modelled by a linear combination of a set of
features: Each column of the matrix M corresponds to a feature, and the feature weights,
wp, determine to what degree voxel p responds to those features. Each feature set spans
a specific subspace of the activation profiles that are “allowed” under the model. Any
deviation from these permissible profiles would reduce the measure of fit. Early encoding
models used multiple regression to estimate the feature weights (Mitchell et al., 2008),
followed by either decoding or classical statistical approaches to determine the quality of
the fit.

Using standard regression, however, has severe limitations. When the number of
features approaches the number of distinct experimental conditions, all models fit the
data equally well. Therefore, it is common practice to introduce a second modelling
level that specifies a prior distribution on the voxels weights p(wp), often assumed to
be Gaussian with mean 0 and (co)variance Ωθs. Matrix Ω determines the shape of the
distribution and θs simply scales the overall variance of the signal. Together with the
feature matrix, this prior specifies how likely activity profiles are under a specific model.
If we take the data to be the vector of estimated activity profiles ûp, obtained from a first
level time-series model, and if we assume that these are estimated with error variance θε,
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then the best linear predictor of wp is

ŵp =
(
MTM + Ω−1θε/θs

)−1
MT ûp. (1)

The term Ω−1θε/θs shrinks the estimates towards the more likely regions of the prior
distribution. In the case of Ω = I, the above equation simplifies to Ridge regression.

The “fit” of such model is usually compared using crossvalidation. Leaving out a small
subset of data (˜10%), the voxel weights are estimated from the remaining training set.
The prediction of the left-out data is then assessed using crossvalidated R2 or correlation
between measured and predicted voxel activities. Crossvalidation automatically penalizes
model complexity, making it possible to compare models with different number of features
directly. In essence, crossvalidation assesses the likelihood of the activity profiles under
the hypothesized distribution of the activity profiles, independent of the actual voxel-
feature weights. This distribution is a Gaussian (implicitly assumed when using Eq. 1),
with zero mean and a (co)variance matrix that depends on the features and their prior,
G = MΩMT . Matrix G therefore fully specifies the representational model.

1.2 The feature fallacy

This observation has an important consequence: Two representational models are iden-
tical if the predicted (co)variance matrix G is identical. When we find a well-fitting
feature model, we need to consider that there are many other feature sets that predict
the same activity profile distribution and therefore describe and predict the data equally
well. Thus, features sets may be useful tools to describe distributions of activity profiles,
but they do not carry a special significance in themselves. With the term feature fallacy
I am referring to the common mistake of confusing the tools that we use to describe the
data and the very thing that we seek to understand.

As an example, consider the representation of finger movements in M1 and S1 (Ejaz
et al., 2015). In this experiment participants produced isometric finger presses with each
finger of the contralateral hand. In a restricted area around the central sulcus, voxels
vary their activity systematically with the finger used. Fig. 2a shows the activity a
set of these voxel, plotted into the space of three of the fingers. As we can see, the
middle and ring finger activity is highly correlated across voxels, whereas thumb activity
is relatively independent. The covariance matrix of the activity profiles is well-preserved
across participants and coincides with the covariance matrix of finger movements in every-
day life. The findings suggest that the finger movement representation are shaped by
every-day structure of such movements.

We can model this distribution of voxels using the 5 fingers as features. The cross-
validated fit will be especially good when the prior variance Ω is set to the covariance
matrix of natural movements. The estimated tuning for each voxel for each finger can
then be visualized in a winner-take-all map on the cortical surface (Fig. 2b), revealing a
somatotopic map, an orderly representation of individual digits from thumb (ventral) to
little finger (dorsal).

Alternatively, we can describe the distribution using the principal components of the
covariance matrix of the natural statistics of finger movements (Fig. 2c). In the motor
control literature, the components underlying natural behaviours are termed “synergies”.
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Figure 2: Three feature models that describe the activity during finger movements in M1
and S1 equally well. (a) Distribution of voxels in the space of three of the experimental
conditions. Each dot represents a voxel’s activity profile across thumb, middle and ring
finger. The distribution can be described by using individual fingers as features. (b)
Surface map of the human S1 and M1 with voxels coloured according to which finger they
are most activated. The colour saturation reflects the strength of the tuning, with grey
areas showing no finger preference. Dotted line: fundus of the central sulcus. Length scale
is approximate. (c) The distribution can also be described using the principal components
of the natural statistics of finger movements (synergies). (d) Surface map of feature
weights for the synergy model with voxels either scoring high (+) or low (-) on each PC.
(e) A model with 5 random feature vectors explains the data equally well, but (f) lead to
a different feature map.
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In this coordinate systems, the weights for the different features are approximately un-
correlated. When mapping the synergy preference of each voxel, an ordered “synergy
representation” (Leo et al., 2016) emerges (Fig. 2d). Finally, we could equally describe
the distribution with random features (Fig. 2e). As long as the prior (co)variance matrix
(and hence the regularization) is adjusted accordingly, the crossvalidated accuracy of this
model remains the same. Again, a convincing looking map of the random features can
be produced (Fig. 2f).

The deeper point here is that all three feature sets are equally good descriptors of
the data and all would result in the same crossvalidated prediction accuracy. Even when
we constrain the prior (co)variance matrix to be diagonal, there are in infinite number
of feature sets that would lead to the same prediction for left-out data. With equally
strong conviction we can therefore conclude that primary sensorimotor cortex represents
fingers, natural synergies, or random features. All three conclusions would be valid to
some degree, but none of them would provide a deeper insight into underlying neuronal
computations. Debates about which feature set is most appropriate therefore miss the
point. The main finding is that the distribution of activity profiles is highly structured,
that this structure is preserved across individuals, and that it relates in systematic fashion
to the correlation of these movements in everyday life. The feature labels we use to
describe the distribution are secondary.

This is not to say that we shouldn’t be allowed to think about neural activity in
terms of underlying features. Features can provide a semantically meaningful descrip-
tion of population codes and representational spaces (see below). They are useful tools in
constructing representational models, especially in cases in which there no discrete exper-
imental conditions – for example when a continuous movie is used as a stimulus. Taking
the representation of features too literally, however, constitutes an intellectual dead-end.
Neurophysiological research, for decades, has striven to determine whether the firing rate
of M1 neurons is better described in terms of muscle activities, extrinsic movement di-
rection, or synergies. The ultimate answer has been that none of these features describes
the population especially well. Instead it is commonly found M1 neurons exhibit “mixed
selectivity”. This means that motor cortex represents movement not according to any
particular feature set, but rather in a latent space that represents the context depen-
dence of complex movement, while at the same time producing the dynamics necessary
to generate the required patterns of muscle activity (Churchland et al., 2012). Rather
than getting stuck in the search for the underlying features, we should compare models
that make testable prediction about the distribution of activity profiles.

1.3 Pattern component modelling (PCM)

This insight motivated the development of PCM, which seeks to evaluate the likelihood
of the observed activity profiles under the hypothesized distribution directly. In the
multi-level view of representational models (Fig. 1), PCM is functionally equivalent
to an encoding model with a Gaussian prior. Instead of defining features, estimating
the feature weights, and then using cross-validation to evaluate their predictive power,
it evaluates the marginal likelihood of the data under the model (and the second-level
parameters) directly.
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p(yp|θ) =

∫
p(yp|up)p(up|G(θ))dup (2)

The first term of the integral is the conditional probability of the data given the
activity profiles, the second term the prior probability of the activity profiles under the
model. The evaluation of the integral in analytical form is possible, as both noise and the
signal are assumed to be Gaussian. The result is the marginal likelihood, the probability
of the data under the assumed distribution, independent of the actual value of individual
activity profiles. The marginalization achieves the same as the crossvalidation employed
in encoding models: it corrects for the complexity (number of features) of the model.

To determine which model provides the most appropriate description of the data, we
can therefore simply chose the model with the highest marginal likelihood. The ratio of
the likelihoods is the Bayes factor, a measure of the evidence of one model over the other
(Kass and Raftery, 1995). This approach is valid for models that predict a fixed represen-
tational structure, i.e. models based on a single feature set with only one signal variance
and noise variance parameter on the second level (θ). Under these circumstances, the
marginal likelihood can serve as an approximation of the model evidence - the proba-
bility of the data given the model. Using Bayes factors allows for more powerful model
comparison than possible through encoding models or representational similarity analysis
(RSA) (Diedrichsen and Kriegeskorte, 2017).

All second-level parameters can be efficiently optimized as analytical derivatives of
the marginal likelihood with respect to these parameters are easily derived. A Matlab
implementation of the corresponding algorithms is openly available (Diedrichsen et al.,
2017). In sum, the core idea behind PCM is to abstract from the actual activity patterns
and model features, to make direct and powerful inferences about representational models.

1.4 Representational similarity analysis (RSA) and representa-
tional spaces

The abstraction from activity patterns and features is shared with a number of other
representational analysis techniques, first and foremost RSA (Kriegeskorte, Mur, and P.
Bandettini, 2008). A central concept in this approach is the notion of a representational
space (Guntupalli et al., 2016; Kriegeskorte and Kievit, 2013) . Instead of thinking about
voxel activity profiles as points in the space of experimental conditions (Fig. 3b), we
can think about the conditions as points in the space of voxel activities (Fig. 3c). The
relationship between the different activity patterns in this space defines the representa-
tion. In RSA, the relationship is quantified through a dissimilarity measure, with higher
values indicating more distinct activity patterns. The representational geometry can be
summarized succinctly by the matrix of all pairwise dissimilarities, the representational
dissimilarity matrix (RDM).

Dissimilarity measures have the intuitive appeal of reflecting how strongly the dis-
tinction between two conditions is represented in an area. That is, it tells us how well a
read-out neuron that has access to the whole population code, could distinguish the two
conditions. More generally, the representational geometry determines how well any fea-
ture that describes the underlying conditions could be read out. An especially useful dis-
similarity measure is the crossvalidated estimate of the Mahalanobis distance (Diedrichsen
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Figure 3: Representational spaces. (a) The data consist of repeated measures of the
same set of voxels across a range of conditions. Each column of the matrix constitutes
an activity profile, each row an activity pattern across voxels. (b) The activity profiles
can be plotted in the space of the experimental conditions. Representational models
specify a distribution of activity profiles. (c) The activity patterns can be plotted in the
space spanned by the voxels. The relationships between activity patterns in this high-
dimensional space define the representational geometry (lines). (d) Two views of a low-
dimensional projection of the representational geometry of individual finger movements
in M1 (1:thumb - 5: little finger) at 4 different movement speed (black: slow - gray:
fast).*
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and Kriegeskorte, 2017). This distance estimate is unbiased, i.e., the expected value of
the dissimilarity is zero if two activity patterns only differ by noise. Thus, like crossvali-
dated decoding performance, it can be used to assess whether there is a true differences
between two activity patterns.

RSA, PCM and encoding models are tightly related. This relationship is due to the
fact that all three approaches assess model fit by comparing the second-moment matrices
of the activity profile distributions. The second moment of P activity profiles is defined
as

G =
∑
p

upu
T
p /P. (3)

Both Euclidean (d1,2 =
√
G1,1 − 2G2,1 +G2,2) and correlation distances (d1,2 = 1 −

G2,1/
√
G1,1G2,2) are direct functions of this matrix. As the RDM, the second-moment

matrix determines the representational geometry completely, with the only difference that
it also specifies the distance of each condition from resting baseline.

The definition of the second-moment matrix is nearly identical to the definition of the
(co)variance matrix of the activity profiles, the central statistics in encoding and PCM
models. The only difference is that for a (co)variance matrix, the mean activity profile
(across voxels) is subtracted before applying Eq. 3. However, in the context of repre-
sentational analysis, differences in mean activity between conditions are meaningful —
indeed many important dimensions, such as stimulus intensity, are encoded in the overall
activity. Subtracting the mean activity profile (column mean in Fig. 3a) would remove
such difference and severely distort the representational geometry. Although sometimes
performed, such subtraction are therefore not meaningful from a representational stand-
point. By not performing this subtraction, PCM and encoding approaches assume the
mean of the signal distribution to be zero. Any meaningful mean activity differences are
therefore captured in the second moment matrix. In sum, all three approaches define
models by the second moment of the predicted activity profile distribution. The only
technical difference is how exactly the mismatch between empirical and predicted second
moment matrix is measured (Diedrichsen and Kriegeskorte, 2017).

Using representational spaces, one can visualize the representational geometry of a
population code without the need to define a model a-priori. To be able to generate
graphs in 2 or 3 dimensions, we typically need to reduce the dimensionality of the space.
A common approach here is to use the first 3 eigenvectors of G, i.e., the 3 patterns that
best differentiate between conditions. It is, however, also useful to explore other views, for
example by picking dimensions that maximize specific experimental contrasts of interest
(Diedrichsen et al., 2017; Kobak et al., 2016). While visualizations of representational
spaces can be very powerful (Fig. 3d), they need to be treated with caution, as different
views of the same data sometimes can tell very different visual stories. This emphasizes
the importance of formal model comparison, which always should be conducted in the
full, rather than the reduced, visualized, representational space.

In summary, representational spaces are an important concept for cognitive neuro-
science. Representational spaces abstract from the underlying spatial activity pattern
and from hypothetical features that are used to describe them. Indeed, it is often ob-
served that the specific activity patterns are quite variable across individuals, whereas
the structure of the representation is well preserved (Ejaz et al., 2015; Guntupalli et al.,

9



2016). The concept of a representational space asserts that what matters is the repre-
sentational content of a population code, but not the details of how it is laid out on the
cortical sheet.

1.5 Flexible representational models

Comparison of representational models can be performed using encoding approaches, RSA
or PCM. While PCM offers slightly more powerful inferences (Diedrichsen and Kriegesko-
rte, 2017), the small increase in power alone may not constitute an overwhelming argu-
ment for its use. The strength of PCM, however, becomes apparent when considering
more complicated or flexible representational models.

The representational models considered so far have been “fixed”. The crossvalidation
in encoding models, the calculation of the marginal likelihood in PCM, and the calculation
of distances in RSA, effectively “integrates out” the first-level parameters (Fig. 1). That
is, even with thousands of voxel-feature weights, encoding models with a single ridge-
coefficient predict a fixed distribution of activity profiles.

It is, however, a rare stroke of luck if we can explain the neural activity patterns in a
specific region fully using a single feature set. From a computational perspective it may be
intuitive at first to think of information processing as a clear sequence of transformations.
Speech comprehension, for example, could be conceptualized as starting with a stage that
analyzes the spectral features, followed by a stage that detects phonemes, and ending in
a stage that identifies the semantics of the entire word (Poeppel et al., 2012).

Unfortunately, nature does not usually accommodate neuroscientists by arranging
computations in an anatomically orderly fashion, with each region corresponding to one
distinct stage of information processing. Rather, most areas show a mixture of represen-
tations from multiple processing stages. For example, coding in the caudal premotor and
primary motor cortex exhibit a mixture of extrinsic and muscle-like tuning (Wu and Hat-
sopoulos, 2007). Similarly, most sensory regions respond to a mixture of basic perceptual
features, context information, and attentional signals. Therefore, our default assumption
should not be that a representation can be explained by a single feature set, but rather
that each region will exhibit a specific mixture of different representations.

This should be reflected in the way we analyze brain data. We therefore require
techniques that allow us to test for a mixtures of representations. Different approaches
have been developed for this purpose. For example, using RSA, Khaligh-Razavi and
Kriegeskorte (2014) combined the predictions derived from different layers of a deep-
neural network with a categorical model to explain object representations in inferior
temporal cortex. Similarly, using an encoding approach, Heer et al. (2017) considered
a mixture of spectral, articulatory, and semantic properties to explain representations in
the auditory processing stream. Using PCM, Yokoi et al. characterized finger sequence
representations in cortical motor areas through a mixture of representations of single
fingers and transition between finger presses (Yokoi et al., 2018).

Methodologically, this is an inference problem that is relatively well studied in the
statistical literature (Clyde, 1999). The first step is to be able to fit more complex models
to the data, which requires us to find the optimal weighting of each feature set. In the
context of PCM, the second-moment matrix of the data can be modelled using a weighted
linear combination of the predicted second-moment matrix of i = 1...I components
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G =
∑
i

θiGi, (4)

where θi are the non-negative component weights. Linear combination here assumes
that the features across different components are mutually independent. Because the
analytical derivates of the marginal likelihood in respect to each weight can be easily
derived, the optimal weights can be estimated very efficiently.

The second step is to find the best feature sets to combine. This can be achieved
by fitting all possible combinations of components (i.e., feature sets). Because each
of the K component can independently be either present or absent, this amounts to
fitting 2K models, which is easily possible for small K. Once the number of candidate
components becomes large, one needs to resort to model search strategies, such a step-wise
or approximate Bayesian approaches (Clyde, 1999). In evaluating each model, we need
to take into account the increasing complexity of models with more components. Even
though PCM does not require crossvalidation for fixed models, as first-level parameters
are integrated out in the marginal likelihood, this analytical approach cannot easily be
applied to second-level parameters (Fig. 2). Practically, we can resort here to using AIC,
BIC or cross-validation within or across participants (Diedrichsen et al., 2017). Each
of these measures gives us an estimate of the model evidence for each combination of
features.

The last step is to make inferences about the presence or absence of a specific com-
ponent. For example, we would like to map how much evidence there is for a semantic
representation in secondary auditory areas in the context of the other competing expla-
nations. It has been suggested to use the concept of “variance-partitioning” (Heer et al.,
2017) to express what proportion of the variability can be explained uniquely by a feature
set. This concept from unregularized linear models does, however, not readily generalize
to the probabilistic setting. For example, the combination of two feature sets often pro-
vides a poorer description of the data than either feature set alone, even if the two feature
sets account for different aspects of the data. Thus, a probabilistic approach is needed.
One attractive approach is to evaluate the strength of evidence for each component in
terms of a Bayes factor. We can apply Bayesian model averaging and divide the total
posterior probability of all models containing the component by the posterior probability
of all models not containing the component (Clyde, 1999; Shen and Ma, 2017). Inference
on the group level can then be conducted using normal frequentist tests using log-Bayes
factors, or by using Bayesian models of inter-subject variability (Stephan et al., 2009).

Inference on flexible representational models is an area of multivariate analysis that
is developing quickly. Our discussion is not restricted to models, in which the second-
moment matrix of different components combine linearly (Eq. 4). Exactly the same
principles apply to models in which G is a differentiable (but otherwise arbitrary) function
of the second-level parameters, G = F (θ). In PCM, these types of models can be handled
with the existing machinery (Diedrichsen et al., 2017). This allows the user to model
receptive fields with different widths, arbitrary correlations between feature sets, and
relative weighting of individual features within correlated feature sets. These techniques
enable researchers to make inferences on relatively complex representational models.
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1.6 New developments

The structure and inference of standard representational models is starting to be well
understood. Among the many novel directions of method development, I highlight three
that are particularly promising and exciting.

Throughout the chapter we have assumed that the prior on the feature weights is
Gaussian, prompting us to use the second moment as the sufficient statistic for model
comparison. However, we can also construct representational models that predict a clus-
tering of activity profiles around specific feature directions. A classical example would be
the tuning of V1 neurons that respond to specific locations in space (with each location
being a feature), with neurons showing responses for a number of disparate locations
being rare. The corresponding distribution of activity profiles would not be Gaussian
anymore, but would have elongations along specific directions. Such a distribution can
be modelled within a PCM-like approach by using a multivariate Gamma distribution as
a prior (Norman-Haignere et al., 2013). Similarly, using a different dissimilarity measure
and ways of constructing representational spaces could render RSA sensitive to aspects
of the activity profile distribution that go beyond the second moment. However, evidence
that such models provide a better description of fMRI data as compared to models with
Gaussian priors is still missing.

Another frontier of method developments is to soften one assumption that is at the
core of RSA and PCM: namely that the spatial layout of activity patterns does not mat-
ter. While the exact layout on the cortical sheet likely reflects to a large degree random
biological variation, there may be some aspects of the spatial arrangement that do mat-
ter. For example, some features are represented in the fine neuron-by-neuron variation
in activity profiles, while others are encoded on a coarser level. While the overall in-
formation content of these two representations may be identical, the two architectures
would differ in which components of the representation can interact through short-range
intracortical connections, which in turn may have substantial consequences for the infor-
mation processing in this region. Unfortunately, fMRI is strongly biased towards features
that are represented at a larger spatial scale (Kriegeskorte and Diedrichsen, 2016). Thus,
improvements in the spatial resolution of fMRI combined with more comprehensive spa-
tiotemporal models will be needed to study this aspect of representations organization.

Finally, the generation of better models of brain representations is a highly active area
of current research. While traditional representational models are motivated by sets of
hypothesized and hand-crafted features, new theories are increasingly informed by ma-
chine learning techniques. For example, numerous studies have systematically compared
representational geometries emerging in the hidden layers of deep neural networks to the
representational geometries found in brain areas that are expected to perform similar
function (see Chapters by Yamins and Storrs & Kriegeskorte in this volume). These de-
velopments are exciting and promise to elevate the study of brain representation to the
next level — namely to build models of brain computations that would actually be able
to perform the underlying tasks.
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