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Srimal R, Diedrichsen J, Ryklin EB, Curtis CE. Obligatory adap-
tation of saccade gains. J Neurophysiol 99: 1554-1558, 2008. First
published January 30, 2008; doi:10.1152/jn.01024.2007. We tested
the hypothesis that saccade gains adapt to minimize error between the
visual target and the saccade endpoint of every saccade we make even
when the errors on sequential saccades are not directionally consis-
tent. We utilized a state-space model that estimated the degree to
which saccade gains were modified by the magnitude and direction
of errors made on the previous trial. Importantly, to show that
learning did not depend on the accumulation of directionally
consistent errors, we fit the model to saccades made to targets that
were displaced in a random direction during the saccade, thereby
inducing errors with directions that were not sequentially the same.
Saccade gains clearly adapted on a trial-by-trial basis despite that
the perturbations were random, and the average amount of learning
per trial was of similar magnitude as that found in a constant
displacement of the target. These results indicate that saccade
adaptation is a rapid and obligatory process that does not require
conscious awareness.

INTRODUCTION

Saccades are ballistic eye movements that shift the point of
gaze to a new location that is the goal of visual exploration.
They are highly accurate despite being too rapid (~20 ms for
small saccades) to be influenced by visual feedback (retinal
processing time: ~20-30 ms). Therefore the trajectory of the
saccade is programmed prior to its initiation. Within the
oculomotor system, the motor programs issued given the po-
sition of the visual target on the retina remain accurate in the
face of fatigue, injury and aging. Such plasticity emerges
through motor learning mechanisms that continually adapt the
system to new sensorimotor transformations.

Saccade adaptation, as it is called, can be studied in the
laboratory by slightly displacing the visual target while the sac-
cade is in flight. Following the saccade, the system perceives an
error or mismatch between the position of gaze and the visual
target. This error induces new motor learning. Since people are
effectively blind while a saccade is in flight, subjects are unaware
of the shift but nevertheless do adapt the gain of saccades to match
the displaced target over time (McLaughlin 1967). Subjects are
presented with blocks of trials where the target is consistently
displaced and adaptation follows a characteristic profile depend-
ing on whether the target was displaced to a greater (forward-
stepped) or lesser (back-stepped) eccentricity. The gain changes
slowly and exponentially, reaching its maximum by 30—60 trials
in humans (Deubel et al. 1986; Frens and van Opstal 1994; Hopp
and Fuchs 2004; Watanabe et al. 2003) and 100—-800 trials in

monkeys (Hopp and Fuchs 2004; Straube et al. 1997) for back-
stepped targets. The amount of adaptation is quantified by com-
paring the gain values before and after the block of displaced
targets. The McLaughlin paradigm has been useful to researchers
interested in measuring the final cumulative amount of motor
learning. However, the consistent error from trial to trial (e.g.,
always back-stepped by 10%) confounds our ability to distin-
guish between competing learning mechanisms. Specifically,
learning may operate at a very fast time scale, following every
saccade that is inaccurate. Alternatively, learning may occur
slowly and only after the system experiences directionally
similar errors over a number of instances. To distinguish
between these hypotheses, we measured the degree to which
saccade gains were modified by errors made on the previous
trial. Importantly, to show that learning did not depend on the
accumulation of directionally consistent errors, we modified
the classic McLaughlin paradigm such that saccades were
made to targets that were displaced in a random direction
during the saccade, thereby inducing errors with directions that
were not sequentially consistent.

We fit a state-space model based on computational models of
motor control to estimate the amount of learning on a trial-by-trial
basis (Diedrichsen et al. 2005; Donchin et al. 2003; Thoroughman
and Shadmehr 2000). These models explain how motor systems
maintain fast and accurate movements despite the slow and
unreliable nature of biological feedback (Kawato 1999; Wolpert
and Kawato 1998). In the case of saccade adaptation, an inverse
dynamics model computes the motor command necessary to
generate the desired saccade. An efference copy of the motor
command is sent to a forward model, which predicts the sensory
error given the current state of the system and the perturbation to
the system. This error is weighted by a learning parameter to form
the teaching signal that trains the inverse dynamics model to
produce an updated motor command.

METHODS

Subjects

Twelve healthy individuals (8 female, 4 male; 9 right-handed, 2
left-handed, 1 ambidextrous; ages between 18 and 39) gave written
informed consent according to procedures approved by the human
subjects Institutional Review Board at New York University, and
were paid for participation.

Oculomotor and stimulus procedures

Subjects were seated in a darkened room 57 c¢cm from a monitor
(37 X 30 cm) with their heads stabilized via a chin rest. Eye position
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was recorded at 240 Hz with an infrared videographic camera (ASL
504; Applied Sciences Laboratories, Bedford, MA). Gray dots that
subtended 1° of visual angle were used for fixation and target except
during inter-trial intervals when the fixation dot was blue. In-house
software (Gramalkn, http://www.ryklinsoftware.com) was used to
present stimuli, quantify saccade timing and amplitude, and modify
visual displays contingent on eye position. Targeting saccades were
detected when the eye position left a 1.5 © radius circle centered on the
fixation point; this, on average across subjects, took 262 £ 69 (SD)
ms following the presentation of peripheral visual target. Eye-move-
ment data were transformed to degrees of visual angle, calibrated
using a third-order polynomial algorithm that fit eye positions to
known spatial positions, and scored off-line with in-house software
(GRAPES).

Stable adaptation (SA) experiment

Preadapt trials (Fig. 1A): subjects maintained fixation (F, gray dot)
for 2 s after which a target (T1, gray dot) appeared 16° to the left of
fixation. Simultaneous with target onset, the fixation point disap-
peared, and the subject made a saccade to the target location and then
after 2 s another saccade back to the blue fixation dot when it
reappeared for the randomly varied intertrial interval (1, 1.5, 2, 2.5,
3 s). The fixation dot reappeared in a new location (1 of 6 possible
locations along the horizontal axis — 5, 6, 7, 8, 10, or 11°) and the
target location was always 16° to the left of it. Adapt trials (Fig. 1B):
the task was the same as during preadapt trials, except that when the
saccade was detected, the target was stepped backward by 2° along the
horizontal axis (T2). Postadapt trials (Fig. 1A): same as preadapt
trials.

Random adaptation (RA) experiment

Preadapt trials (Fig. 1A): the trial structure was identical to the
stable adaptation preadapt trials (see preceding text). Adapt trials (Fig.
1C): the task was the same as during preadapt except when the
saccade was detected, the target was either stepped backward (T2) by
2° or forward (T3) by 1° (to help compensate for inherent hypometric-
ity of saccades) along the horizontal axis in pseudorandom order.
Postadapt trials (Fig. 1A): same as preadapt trials. The random
displacement sequence was identical for all subjects.

In both experiments, subjects performed a block of preadapt (100
trials), a block of adapt (200 trials), followed by a block of postadapt
trials (100 trials). The same group of 12 subjects performed the RA
then SA experiments, and all, but one, were naive to the experiment
and the study’s goals. All subjects underwent a postadaptation session
to reverse saccadic gain adaptation and prevent carry-over effects.
Importantly, subjects reported after the experiment that they did not
notice the target jumps.

A Preadapt and Postadapt B Stable Adapt
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Analysis

Calibrated eye-position data were converted to saccadic gain values
(saccadic gain = amplitude of saccade/target eccentricity) for subse-
quent analysis.

MAGNITUDE AND RATE OF GAIN ADAPTATION. To determine the
magnitude of adaptation and whether the gain change between the
preadaptation trials and the adapted trials was significant, we calcu-
lated the mean of the gains during the last third of the preadaptation
trials and the last third of the adapt trials and did a paired sample #-test.

For the SA condition, we determined the rate constant of adaptation
by fitting an exponential function of the following form (Fujita et al.
2002) to the adaptation data

a(0) = a, + (ag — a)e "

where, a(f) = curve fitted gain for trial #; a, = mean adaptive gain
value; a, = mean preadaptive gain value; ¢ = trial number; 7 = time
constant for adaptation. T was calculated using a nonlinear least-
squares algorithm.

STATE-SPACE ADAPTATION MODEL. To quantify learning during
both our experimental conditions, we fit our data to a state-space
model based on a feedforward theory of motor learning. This model
comes from control theory and relates a number of input to a number
of output variables via a set of state variables. Such state-space models
can be used to represent the output of a visuomotor control system as
a function of the input and of the hidden state of the system at a
particular moment in time, i.e., within a given motor trial. More
importantly, they can be used to describe the temporal dynamics of
how the hidden state develops over time, i.e., how the visuomotor
system learns from trial to trial. The model allows us to accurately
quantify learning on a trial-by-trial basis, which cannot be done by
simpler percentage gain change calculations. Similar approaches have
been used to model learning and generalization in a force-field
reaching task (Diedrichsen et al. 2005; Donchin et al. 2003; Smith
et al. 2004; Thoroughman and Shadmehr 2000) as well as during
sensorimotor adaptation to altered visual feedback (Cheng and
Sabes 2006). The model we use is defined by two equations. The
output equation states that the saccade gain produced on trial n (y,,)
is determined by the adaptive state of the system (z,) plus some
random noise (g,,)

yn:Zn+8n

Second, the state-update equation states that the adaptive state of
the next trial z,,,, is calculated by updating the current predicted
gain, z,,, by a certain proportion (B) of the difference between the
predicted saccade gain on the current trial and the target perturbation
(u,,). Therefore the learning rate parameter B determines how fast the
system adapts to a new saccade gain
=2z, Bz, —u,)

Zn+1

C Random Adapt
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FIG. 1. Experimental paradigms. A: pre- and postadapt trial structure for both conditions were the same. A fixation dot, F, appeared for 2 s followed by a

target, T1. B: during stable adapt (SA) trials, the target, T1, was back-stepped to T2. C: during random adapt (RA) trials, the target, T1, was randomly

back-stepped to T2 or forward-stepped to T3 during the saccade.

J Neurophysiol « VOL 99 « MARCH 2008 + WWW.jn.org

6002 ‘S yase\ uo bBiorAbojoisAyd-ul woly papeojumoq



http://jn.physiology.org

Report
1556

For each subject’s data, we used a nonlinear least squares algorithm
to solve for the B parameter, an index of the amount of learning. To
account for individual differences in inherent hypometricity, we set
the starting value of z, to be the mean gain of the last third of each
subject’s preadaptive trials.

RESULTS
Magnitude and rate of adaptation during SA

As expected, during the SA paradigm the gain of saccades
reduced exponentially over the course of the adapt block.
Figure 2A shows the adaptive gain change for a representative
subject. During the preadapt block, saccade gains were slightly
hypometric, reaching 99% of the visual target’s eccentricity on
average. By the end of the adapt block, the average saccade
amplitude shortened to 58% of the back-stepped distance or
~1.2°, #(56) = 7.38, P < 10 °. To quantify the rate of
adaptation, we fit an exponential function to the saccade gains
(green trace) and estimated a rate constant (1) for the adapta-
tion process. The example subject shown in Fig. 2A adapted at
arate defined by 7 = 84 trials. We found similar results for the
others subjects, where on average they adapted to ~52% of
the gain of the back-step and the mean rate constant for the
adaptation (1) was 58 * 16.3 trials. Overall the mean saccade
gains across subjects were significantly smaller when we com-
pared the last third of late-adapt trials to the last third of
preadapt trials in the SA condition, #(11) = 8.66, P < 107°.

State-space model quantification of learning during SA
and RA

Next, we fit the state-space model to each subject’s data
from the SA and RA experiments and solved for the learning
rate parameter, B. Again, this parameter estimates how much
weight was given to the error experienced on a current trial to
predict the gain on the next trial. During SA, subjects signifi-

A Model prediction and exponential fit
during stable adaptation

1.10 1.10

B Model prediction during random adaptation
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cantly adapted their saccade gains by the end of the adapt
block, mean B value = 0.02 £ 0.01, #«(11) = 2.21, P < 0.05,
which corresponds to an exponential learning rate of 44 trials,
thereby corroborating the previous analysis of the amount of
adaptation in the SA condition. Moreover, the individual sub-
jects’ B values had a trend toward negative correlation with the
7 values estimated in the preceding text from the exponential
fits, 7(10) = —0.42, P = 0.18, and a positive correlation with
the percent amount of adaptation, #(10) = 0.69, P < 0.05. This
correlation is critical because it demonstrates that the B param-
eter is sensitive to learning. Figure 2A shows a plot of predicted
gain derived from the model for all three stages of the SA
experiment for a representative subject. The predicted gain (red
trace) has an exponential form as the system changes gain
during the adapt block to minimize the error between the
saccade endpoint and the back-stepped target.

During the RA condition, the overall saccade gains reduced
slightly during the adaptation block compared with the pre-
adapt block, #(11) = 4.36, P < 0.005. However the gain
reduction during the RA compared with the SA condition was
significantly less, about half [~1° gain reduction during SA vs.
~0.5° during RA, #(11) = 3.87, P < 0.005]. Moreover, this
measure of learning is not valid during RA because learning
took place in opposing directions, and the true amount of
learning is underestimated. To correct for this, we fit the RA
data with our state-space model and estimated the true amount
of trial-by-trial learning, mean B value = 0.03 * 0.001,
t(11) = 4.22, P < 0.01. Recall that B estimates the degree to
which the gain of a given saccade was influenced by the
experienced error on the past trial. Figure 2B shows a plot of
predicted gain (red line) calculated by the state-space model for
the course of an entire RA experiment for a representative
subject.

Next, we compared the amount of learning during the SA
and RA conditions with a paired #-test across individuals. The
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FIG. 2. Saccade gains before, during, and after adaptation from an example subject. A: during the SA block, the target (blue trace) was back-stepped during
the saccade. The saccade gain (black dots) steadily adapted to match the new target location at a characteristic exponential rate (green trace). State-space model
fit for the predicted gain (z; red trace) reached an asymptote during SA as the saccadic system adapted to constant error signals. B: during the RA block, the target
gain was randomly stepped to 2° backward or 1° forward (blue trace). The predicted gain (z; red trace) fluctuated between the 2 target perturbations as the saccadic
system learned from random error signals on each trial. C: mean saccade amplitude adjustment for each subject in response to positive visual errors (overshooting
target) during SA and RA learning and in response to negative visual errors (undershooting target) during RA learning. In response to positive visual errors,
saccades became more hypometric (negative saccadic adjustment). In response to negative visual errors, saccades became more hypermetric. Each dot is an
individual subject’s mean saccade amplitude adjustment. Lines and error bars represent sample mean = SE for each condition.
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B values estimated during the SA condition were not signifi-
cantly different from those estimated during the RA condition,
#(11) = 0.61, P > 0.4. This indicates that on a trial-by-trial
basis the saccade gains adapted to a similar degree during the
SA and RA conditions. However, the B values from SA and
RA did not significantly correlate across subjects, r(10) =
—0.26, P > 0.4, indicating that the strongest learners in SA
were not necessarily the strongest learners in RA. Although
this could indicate that different mechanisms support learning
in SA and RA, several issues preclude this interpretation. One
would expect an individual’s SA and RA learning parameters
to be correlated only if they measure stable trait-like aptitudes
that were consistently expressed over the two different testing
sessions. Additionally, the RA session always preceded the SA
session leaving open the possibility that an order effect
masked a potential correlation. Finally, it may be the case
that a good learner is one that is not only sensitive to error
feedback, but one that also discounts feedback when it is
unreliable as was the case in the RA condition. All of these
uncontrolled factors could have affected the correlation
between SA and RA learning.

Trial-by-trial gain changes following induced errors

The results of our model suggest that the saccade gain for
any given saccade is influenced by the direction of the error
experienced even when the error signal is not consistent. An
earlier study found evidence in favor of this idea (Desmurget
et al. 2000). They reported that saccades had greater ampli-
tudes on trials following random forward-steps compared with
saccades on trials following random back-steps. However, they
did not calculate the actual visual error on each trial. They
assumed that on trials with forward jumps, the saccades always
undershot the target, thus driving saccade lengthening on the
subsequent trial and the opposite phenomenon on trials with
back-steps. Although rare, this may not always be the case as
saccades can overshoot forward-stepped targets and under-
shoot back-stepped targets due to noise in the system. In our
data, subjects undershot the back-stepped target 14% of the
trials (range: 0—40% of trials) and overshot the forward-
stepped target 8% of the trials (range: 0-38%). Thus we used
the difference between the stepped target and the actual sac-
cade endpoint as a metric of visual error. Visual error, in the
form of a feedback signal, is thought to drive learning in the
system (although see Bahcall and Kowler 2000; Bonnetblanc
and Baraduc 2007).

We divided RA trials into those in which subjects experi-
enced positive and negative visual errors due to overshooting
or undershooting the stepped target, respectively. The average
saccade adjustment (i.e., difference between the gain on the
current trial and the gain on the next trial) following positive
errors (i.e., overshot the stepped target) was —0.26 = 0.06°,
and the average adjustment following negative errors (i.e.,
undershot the stepped target) was 0.21 = 0.09° in the opposite
direction. Although the difference in these saccade adjustments
(0.47 £ 0.05°) was significant, #(11) = 3.53, P < 0.005, the
amplitude of adjustment in each direction was not different
from one another. These results support and extend the obser-
vation of Desmurget et al. (2000). More importantly, they corrob-
orate our state-space model; the significant B values of which
indicate that learning occurred during the RA condition. To
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compare the average saccade adjustment following a positive
visual error during RA (—0.26 = 0.06°) to that during SA,
where the magnitude of errors exponentially decreased as the
saccade gains reduced, we focused on the trials during the
dynamic portions of the exponential fits when the gains were
adjusting. Otherwise the errors and subsequent gain adjust-
ments were negligible and could not be compared with RA.
We therefore limited our analyses to the dynamic portion of the
learning, specifically, between the first adapt trial to the trial in
which the exponential fit reached asymptote (i.e., maximum
gain reduction). Following positive visual errors, saccade gains
reduced by an average of —0.23 = 0.09° during SA, which was
not significantly different from that observed during RA,
t(11) = 0.63, P = 0.54. In Fig. 2C, for each subject, we show
the mean saccade amplitude adjustment following positive
errors during the SA and RA conditions and following negative
errors during the RA condition. In response to positive errors
during SA and RA, the subjects shortened their saccade am-
plitudes on the next trial. In response to negative errors during
RA, they lengthened their saccade amplitudes on the next trial.
Neither the condition (SA vs. RA) nor the direction of visual
error (overshoot vs. undershoot) affected the size of the sac-
cade adjustment on the next trial; both adjustments were
around 1/4 to 1/5 of a degree. Moreover, the amount of saccade
adjustment following errors during SA and RA showed a trend
of positive correlation across subjects, #(10) = 0.51, P = 0.09.
Together, these data suggest that following a saccade error, the
amplitude of the next saccade is adjusted by about 1/4 to 1/5 of
a degree to compensate for the error. Desmurget et al. (2000)
reported a slightly larger average gain adjustment of about 1/3
of a degree during RA. If the adjustments were consistent
across trials, subjects should have adapted to the 2° back-step
during SA in no more than ~20 trials. However, subjects took
on average 58 trials for their gains to stabilize and only adapted
to about half of the full target back-step. This apparent over-
estimate of the trial-by-trial adjustment in saccade gains can be
explained. Following the few SA trials in which the saccade
undershot the back-stepped target, subjects made large positive
corrections to their next saccade (i.e., 1.12 = 0.48°, mean *
SD), which had the effect of slowing the rate of adaptation.

DISCUSSION

Learning is traditionally viewed as an adaptive change in
behavior. For instance, in the stable saccade adaptation exper-
iment when the target was back-stepped on every trial, the
error distance between the saccade endpoints and the back-
stepped visual targets got smaller over time. In essence, the
subjects learned. Their performance improved as their sac-
cade gains adapted to the new sensorimotor transformation.
We also found evidence that subjects learned even when
their performance could not improve because the error on
any given trial did not predict the direction with which the
target would be displaced on the next trial. To quantify
learning under such circumstances when it cannot be in-
ferred by an exponential decrease in saccade gains over the
course of many trials, we adopted a model based on linear
dynamical systems that has been used to model trial-by-trial
learning of reaching movements (Diedrichsen et al. 2005;
Donchin et al. 2003; Thoroughman and Shadmehr 2000).
Fitting the model to data from the random saccade adaptation
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experiment, we estimated the degree to which any given
saccade gain was influenced by the visual error experienced on
the previous trial. Our findings clearly demonstrate that such
learning takes place even when the visual error feedback
cannot be used to improve overall behavior. This finding,
combined with the fact that subjects were not aware of the
transaccadic displacements of the targets, indicates that sac-
cade gain adaptation occurs without conscious awareness and
is obligatory.

These data have two important implications for theories of
motor control and learning (Kawato 1999; Wolpert and Kawato
1998). The first implication is that trial-by-trial learning is of
an obligatory nature. It occurs even under conditions when
subjects’ behavioral performance does not or cannot improve,
as when we randomly displaced the visual target. Moreover
this type of learning does not require conscious awareness. A
fast, obligatory, and automatic learning mechanism could con-
tinually calibrate the registration between incoming sensory
information and outgoing motor commands free of the need for
volitional resources and unencumbered by the need to track
errors over longer time scales.

The second implication is that motor learning is not gated by
whether the change in behavior is adaptive. Learning in the
motor system does not begin when there is something to learn
nor does it end when adaptation is complete. Rather adaptation
occurs with every error that is experienced. This has an
important implication especially for functional neuroimaging
studies that rely on a random perturbation condition as a
control condition for frue learning (Desmurget et al. 1998,
2000). We need to be aware that neural processes that lead to
adaptive changes are active when perturbations are random.

This raises the important question of whether the processes
that lead to adaptation during random perturbations are the
same as those during stable perturbations. It is tempting to
speculate that the learning that took place over many trials
when the perturbation was constant, as measured during the SA
condition, was simply the accumulation of small gain adjust-
ments on single trials, as measured during the RA condition.
Indeed the most parsimonious explanation of our data are
consistent with a single learning mechanism that operates on a
fast trial-by-trial time scale. This is based on the fact that the B
values and average gain adjustments were not significantly
different for the SA and RA conditions. Even if the fast
adaptive processes for random and stable conditions are the
same, it is likely that additional mechanisms that work on
slower time scales become important in stable adaptation
paradigms (Kojima et al. 2004; Kording et al. 2007; Smith
et al. 2006). For example, a learner is more flexible and
efficient across a wide range of contexts when she can
employ a system that is more sensitive to errors but forgets
quickly and another system that is less sensitive to errors but
forgets slowly (Kording et al. 2007; Smith et al. 2000).
Nonetheless we cannot rule out the alternative hypothesis that
fast trial-by-trial learning during stable and random adaptation
is governed by independent mechanisms (Desmurget et al.
2000). We did not find that the amount of learning in the SA
condition correlated with the amount of learning in the RA

R. SRIMAL, J. DIEDRICHSEN, E. B. RYKLIN, AND C. E. CURTIS

condition, leaving open the possibility that two independent
mechanisms may have been operating.

We conclude that the oculomotor system adapts to random
perturbations in motor control via a mechanism that is rapid,
obligatory, and does not require conscious awareness. More-
over, these features fit well within emerging theories of motor
control composed of dynamic internal models used to compute
and anticipate the sensory consequences of motor actions.
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