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Review
Glossary

Control policy: a function that translates a state estimate of the body and task

goal into a motor command for the next moment. This function is also referred

to as a ‘next-state planner’.

Cost-function: a function that assigns each possible movement a scalar cost.

The motor behaviour that minimises this cost function is optimal. Cost

functions are unit-less and typically consist of one component that expresses

the external task goal and a second component that serves as a regularisation

factor, expressing an internal cost (e.g. energy or effort).

Effector: here, a part of the motor system that is controlled as a unit.

Depending on the level of analysis, an effector can refer to a muscle, joint or

limb.

State estimate: an internal representation of the state of the body and task-

relevant variables (e.g. a joystick), derived from sensory input and predictions

from a forward model. Optimal state estimates can be derived from a Kalman

filter.

Synergy: as a descriptive concept, synergy refers to systematic correlations

between different effectors observed over a set of behaviours; as such, it is

an empirical fact. As an explanatory concept, it refers to a hypothetical
Optimal control theory and its more recent extension,
optimal feedback control theory, provide valuable
insights into the flexible and task-dependent control
of movements. Here, we focus on the problem of coordi-
nation, defined as movements that involve multiple
effectors (muscles, joints or limbs). Optimal control
theory makes quantitative predictions concerning the
distribution of work across multiple effectors. Optimal
feedback control theory further predicts variation in
feedback control with changes in task demands and
the correlation structure between different effectors.
We highlight two crucial areas of research, hierarchical
control and the problem of movement initiation, that
need to be developed for an optimal feedback control
theory framework to characterise movement coordina-
tion more fully and to serve as a basis for studying the
neural mechanisms involved in voluntary motor control.

The problem of coordination
The defining feature of coordination is that multiple effec-
tors work together to achieve a goal. Coordination occurs
at many levels of the motor control hierarchy: between
individual muscles, between joints and between limbs.
Movements are made to achieve goals and effectors are
coordinated to control task-relevant states of the body and
environment (the physical plant). Consider the example of
reaching to press an elevator button. The task-relevant
state is the position of the index finger and the goal of the
reach is to bring the fingertip to the button. A fundamental
problem of coordination is that the number of effectors
involved (in this example ten possible degrees of freedom of
movement between shoulder and index finger, and >40
muscles to actuate these movements) exceeds the dimen-
sionality of the task requirements (three spatial dimen-
sions). Thus, there are many different ways to achieve the
movement goal. Despite this inherent redundancy [1], a
large body of experimental data indicates that the motor
system consistently uses a narrow set of solutions. A
central issue in research on coordination is how and why
the brain selects particular movements given the large set
of possibilities.

Several theories have suggested that there are inherent
constraints in the nervous system that limit the number of
choices, therefore making the problem of coordination
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tractable. The concept of motor synergies (see Glossary)
captures the idea that there is a set of fixed combinations of
muscles, which are preferably controlled as functional
units [2]. Research in this area has attempted to identify
muscle combinations that are stable across different task
goals and movement types [3–5]. Dynamical system theory
posits that coordinative behaviour arises from the entrain-
ment of dynamically coupled oscillators [6], highlighting
why the nervous system exhibits biases for certain pat-
terns such as a preference to produce mirror-symmetric
movements [7]. More cognitively oriented theories have
posited that the motor system achieves coordination by
setting common parameters for multiple effectors during
the process of motor planning [8–10].

Optimal control theory (OCT) and its recent extension,
optimal feedback control theory (OFCT), offer a different
perspective. Rather than focusing on internal constraints
in the control system, these theories emphasise that
coordination can be understood as the solution of an
optimisation process for the tasks that the organism faces.
The characteristics of coordination are therefore deter-
mined by the structure of the task and the body, and less
so by internal constraints of the nervous system.

Here, we highlight how, especially in its current form
(OFCT), the theory accounts for the distribution of work
across different effectors, the task dependency of feedback
control and the structure of variability in coordination.
control structure in the motor system that activates different effectors as a

single unit.

1.004 Available online 11 December 2009 31

mailto:j.diedrichsen@ucl.ac.uk
http://dx.doi.org/10.1016/j.tics.2009.11.004


Review Trends in Cognitive Sciences Vol.14 No.1
We consider two areas of current research (hierarchical
control and the problem of movement initiation) that
require further development for OFCT to serve as a useful
theoretical framework for understanding how coordination
is achieved, in terms of the underlying psychological and
neural mechanisms.

Optimal (feedback) control theory
OCT assumes that biological systems learn to produce
motor commands, which optimise behaviour with respect
to biologically relevant task goals. These goals can be
formally defined as cost functions. One part of the cost
function encodes the external goal of the organism; for
example, for eating, grasping a food item and bringing it to
the mouth. A second part of the cost function, the regular-
isation term, penalises some inherent feature of the move-
ment. In earlier formulations of OCT, this term was based
on the integrated jerk [11,12] or integrated torque change
[13]. In more recent versions, the regularisation term
Box 1. Optimal feedback control

The motor system interacts with the environment via a set of effectors

that are controlled by the motor commands u (Figure I). The current

state of the plant (the body plus environment) is represented by the

state vector x, and its dynamics characterised by the (state-

dependent) matrices A and B. To calculate motor commands, the

system requires an accurate estimate of the state of the plant. Sensory

information from the plant (yt = Hxt) is delayed in time and corrupted

by noise. To overcome instabilities that arise from these factors, the

motor system uses an efference copy of the motor commands and an

internal forward model to generate predictions of the next state of the

system (x*). This prediction can then be integrated with the incoming

sensory information, resulting in a state estimate (x̂). The Kalman

gain K for this integration is adjusted such that each source of

information is weighted according to the inverse of its variance [74].

Motor commands are then determined using a control policy, a set of

rules that dictates what to do given a certain goal and state estimate.

Figure I. Architecture of optimal feedback control.
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consists of the sum of the squared motor commands. Motor
commands are conceptualised here as the neural drive to
the muscles that can be measured as rectified EMG and
that, after low-pass filtering, translates proportionally to
muscle force [14]. A cost function of this form defines an
optimal solution that achieves the goal (reasonably well)
while exerting as little effort as possible. OCT models can
account for the temporal shape of movements [15], the
solution to new task environments [16] and the distri-
bution of work across multiple effectors [17].

Initial developments of OCT defined the optimal
solution as a sequence of feed-forward motor commands
[11,13,15]. Optimal feedback control theory (OFCT) [12,18]
provided an important extension by integrating the role of
sensory feedback. The optimal solution now could be
defined as a control policy (Box 1), a function that trans-
lates a current state estimate of the body into the next
motor command. The control policy originally minimised a
kinematic descriptor, such as squared jerk [12], and later a
Thus, according to OFCT, there is no conceptual difference between

feed-forward and feedback control; the control policy governs both.

Rather, feed-forward and feedback control constitute a continuum

that depends on the degree to which the current state estimate is

influenced by an internal prediction (such as early in the movement,

or under sensory deprivation) or by sensory feedback.

A central problem for this architecture is to determine the

appropriate control policy. Optimal control theory proposes that the

selected control policy minimises a task-dependent cost function, J.

The first component of this cost function, q(x), encodes the external

goal of the organism in terms of task-relevant states; for example, the

state that leads to reward. Because of redundancy in the motor

system, this term alone does not define a unique solution. Therefore,

a regularisation term, r(u), is introduced that penalises the expendi-

ture of unnecessary motor commands, often taking the form of the

weighted sum of the squared motor commands (Box 2).
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measure of effort (squared force). In its current form, OFCT
also incorporates important factors such as the noisy
nature of motor commands and sensory observations
[19]. Whereas OFCT predicts the shape of the average
movement just as well as earlier non-feedback versions
of OCT (indeed, when we make statements about OCT we
always mean to include OFCT), only the latter predicts
how the organism will react to perturbations [20–22]. As
we discuss below, it is this conceptual advance that enables
the theory to account for many aspects of the correlation
structure between different muscles observed during coor-
dinated movements.

Distribution of work across multiple effectors
As an example of how the brain solves muscular redun-
dancy, consider movements around the wrist joint.
Figure 1 shows the pulling directions (the direction of
movement evoked by electrical stimulation of that muscle)
of the five main wrist muscles [23]. How would the brain
combine these muscles for different movement directions?
Because muscles need to work harder to achieve move-
ments that do not lie in their pulling direction, the direc-
tion of movement for which each muscle shows the highest
activation deviates from the pulling direction. This charac-
teristic arises from theminimisation of the task-dependent
term of the cost function, q(x), the squared distance be-
tween intended and produced movement direction. The
exact distribution of work across effectors, however,
depends on the form of the regularisation term, r(u).

When using the sum of motor commands as a regular-
isation term, one would predict that, if the movement
parallels the pulling direction of a particular muscle, then
Figure 1. Pulling direction of the right extensor carpi ulnaris (ECU), extensor carpi

radialis brevis (ECRB), extensor carpi radialis longus (ECRL), flexor carpi ulnaris

(FCU) and flexor carpi radialis (FCR) in a midrange wrist position. The coloured

circles indicate the normalised muscle activation for each movement direction

based on a minimisation of the cost function [17]. The tuning function for each

muscle, as well as the deviation of the preferred direction from the pulling

direction, matches well with empirical results.
only that muscle should be active. For intermediate direc-
tions, activation would be restricted to muscles with neigh-
bouring pulling directions. Indeed, this cost function would
never predict co-activation in more than two muscles (for a
2D-task). Wrist muscles, however, show relatively wide
cosine-like tuning functions spanning a wide range of
movement directions. For most movement directions, at
least three muscles are simultaneously recruited [23].

This pattern of muscular activity can be explained by
using the sum of squared motor commands as the regular-
isation term [17,24,25]. Here, optimality is achieved when
the system distributes work across multiple effectors, even
if task goal could be achieved by the activation of a single
muscle (Figure 1; see also Ref. [26]). This can be seen in the
simple case in which two muscles have nearly the same
pulling direction. The sum of the squaredmotor commands
is minimised when the forces are distributed evenly across
effectors. Importantly, by minimising the sum of squared
motor commands, themotor system reduces both effort and
movement variability (Box 2).

The idea of distributing motor commands across a set of
redundant effectors has also been explored in kinematic
networks (e.g. Ref. [27]). The idea here is that one can
determine the distribution of work across a set of joints, by
simulating how much each joint would move if the end-
point was moved towards the final goal by a small amount.
An OCT model arrives at a similar formulation, but expli-
citly introduces the control cost r(u), additionally to the
stiffness of the joint, as a regularisation term.

In sum, OCT can predict how muscles work in a syner-
gistic manner without using the concept of synergies as an
explanatory concept [2–5,28,29]. Rather, synergies (in the
descriptive sense) arise from the structure of the controlled
physical plant, the task requirements and the regularis-
ation term. Indeed, recent implementations of OCT to
planar reaching movements closely replicate the patterns
of muscular synergies observed in the human arm [30] and
account for the structure of force variability in finger
movement tasks [31].

Task-dependent feedback control
Whereas both feedback and non-feedback versions of OCT
can account for the sharing of the work across effectors, the
power of the approach becomes especially clear when con-
sidering optimal feedback control. An example of this is
provided by a study on bimanual reaching movements
(Figure 2; [32]). In the two-cursor task, participants were
instructed to reach for two separate targets, one with each
hand. The task-dependent component of the cost function
here contains two separate terms, one that minimises the
distance between the left hand and its goal and a second
thatminimises the distance between the right hand and its
goal. In the one-cursor task, a single cursor, presented at
the spatial midpoint between the two hands, was moved to
a single target through the combined actions of both hands.
The task-dependent component of the cost function for this
conditionminimises the distance between the single cursor
and the goal. Despite the difference in cost functions, the
average trajectories for these two tasks are identical,
yielding straight movements with bell-shaped velocity
profiles (black trajectories).
33



Box 2. Why u2? Effort versus variability

Why should the nervous system minimise the sum of the squared

motor commands rather than the sum of the motor commands or

some other function? One possibility is that the function calculated by

squaring the motor commands closely reflects energy expenditure

during movement. However, ATP consumption by muscle fibres is

roughly related to the product of force and contractile change or,

under isometric conditions, to the product of force and time [75]. As

such, ATP consumption is approximately proportional to the sum of

motor commands, rather than to the sum of squared motor

commands. Nonetheless, it is often assumed that the motor system

minimises the squared motor commands to preserve internal

resources. We refer to such a cost as ‘effort’ rather than ‘energy’.

An alternative interpretation lies in the reduction of movement

variability [15]. Noise in the motor system is signal dependent: the

variance of produced force increases proportionally with the squared

mean [76]. Consider how such noise characteristics would influence

endpoint variability. Suppose there is a dynamical system in which

motor command u is affected by noise e (Equation I):

xtþ1 ¼ Axt þ Bðut þ et Þ (I)

By applying this formula iteratively, any state can be expressed as a

function of the initial state and the intervening motor commands

(Equations II and III).

x3 ¼ A2x1 þ ABðu1 þ e1Þ þ Bðu2 þ e2Þ . . . (II)

xp ¼ A p�1x1 þ
Xp�1

t¼1

Ap�t�1Bðut þ et Þ (III)

The variance of this state will be (Equation IV):

var½xp � ¼
Xp�1

t¼1

Ap�t�1Bvar½et �ðAp�1�t BÞT (IV)

If the noise is signal dependent, for example it is composed of

elements et = utcft where c is a constant and f is a Gaussian random

variable with mean zero and variance 1, then the variance of the noise

and the final state can be written in terms of the motor commands

(Equations V and VI):

var½et � ¼ c2u2
t (V)

var½xp � ¼
Xp�1

t¼1

Ap�1�t Bc2u2
t ðA

p�1�t BÞT (VI)

This expression indicates that the variance of the state grows as

a ‘square’ of the motor commands. Thus, to minimise endpoint

variance, the sum of the squared motor commands should be

minimised.

Whether interpreting the u2-cost as effort or variability, predictions

derived from the two approaches are often indistinguishable [19].

However, when the task requires coordination across multiple

effectors, effort and variability can be dissociated. Assume that two

effectors are combined with a similar pulling direction, but with

different signal-dependent noise characteristics, varðuiÞ ¼ c2
i u2

i . If the

system only minimises noise, it should weight each effector by the

inverse of its noise constant c2
i , similar to the optimal integration rule

when combining information from multiple sensory channels [77]. If

the system minimised effort, the work should be distributed evenly or

according to the strength of each effector. Both factors have a

significant role [78], with a higher weight put on effort compared with

variability costs. Although minimisation of effort and variability might

frequently result in similar behaviours, it is important to distinguish

between these two causes when considering how the nervous system

evaluates the cost function during the acquisition of new coordinative

motor skills.
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However, OFCT also predicts that feedback corrections
for the one- and two-cursor tasks should differ. In the two-
cursor task, the optimal control policy specifies that motor
commands to each hand will only depend on the state of
that hand and not on the state of the other hand
(Figure 2c). Therefore, if one hand is perturbed during a
reach, solely that hand should correct for that pertur-
bation. Independent control of the two hands could also
work in the one-cursor task. However, this policy would not
be optimal. Rather, according to OFCT, the motor system
should exploit the redundancy of the one-cursor task by
distributing the correction across both hands, thus mini-
mising the effort term. Indeed, this latter prediction was
confirmed.When a robotic device was used to create lateral
perturbations in one hand, online corrections in the one-
cursor task were shared across the two hands [32] (see also
Refs [33,34]). Interestingly, this behaviour was observed
even if visual feedback of the cursor(s) was absent during
the movement.

Task-dependent changes in coordinative feedback
appear to involve the modification of basic reflex mechan-
isms. In a series of studies, Marsden et al. [35] examined
the task dependency of intermanual reflex responses. Fast
(60 ms) postural reflexes in the right arm in response to
perturbations of the left arm reversed direction depending
on whether the right arm held on to external support or
whether it needed to stabilise a cup full of tea (see also Ref.
[36]). Similarly, in the one-cursor task described above,
perturbations to one arm resulted in EMG responses in the
other arm at latencies as short as 60 ms [37]. Thus, even
medium loop reflex responses appear to bemodified by task
requirements.
34
Although such changes are consistent with OFCT, at
least qualitatively, there are components of the feedback
response that do not change with task requirements
[21,32,38]. Indeed, it would be unrealistic to assume that
the whole system is completely re-optimised whenever the
motor system faces a new task. This point highlights the
need to modify OFCT models such that they incorporate
hierarchies of goals and control [39]. This extension would
provide one way in which only certain parts of the control
structure are modified in a task-dependent fashion.

Structure of movement variability
An intriguing characteristic of coordinated movement is
that variability is structured; systematic correlations can
be found between the actions of different effectors. This
structure is often task dependent. In the bimanual one-
cursor task described previously, the positions of the two
hands are negatively correlated at the end of the move-
ment, deviating in opposite directions from straight ahead
(Figure 3a). This correlation minimises variability along
the task-relevant dimension (the position of the cursor)
even though the variability in a task-redundant dimension
(the distance between the hands) increases. In the two-
cursor task, this correlation is absent.

Task-dependent structure of effector (co-) variances is
often analysed using the concept of the ‘uncontrolled
manifold’ [40–42], the parameter region within which
there is equivalence in terms of the task-relevant vari-
ables. The observation that variability in this parameter
subspace is increased is ubiquitous and can be observed,
for example, in the correlation structure of the seven
muscles controlling the index finger [43]. In the temporal



Figure 3. Structured variability induced by task-dependent feedback gains. (a)

Correlations of horizontal endpoint position of the left (x) and right (y) hands are

found in the one-cursor task (red line and dots) but not in the two-cursor task (blue

line and dots). In the one-cursor task, variability along the task-redundant

dimension (distance between hands, left up–right down diagonal) is not

corrected. (b) The negative correlation develops during the movement,

indicating that it arises from a feedback control law rather than from correlations

in the initial motor commands [32].

Figure 2. Task-dependent feedback control during a bimanual task. (a) In the two-

cursor task, a force field applied to the left hand is corrected by the action of the left

hand alone. (b) In the one-cursor task, part of the correction is performed by the

right hand. (c) The task dependent component q(x) of the cost function comprises

the distance between the position of the left hand ( pL) and its goal (gL) and the

distance between the right hand ( pR) and its goal (GR). Minimisation of this cost

function results in independent control gains (L) for the two hands. (d) The cost

function for the one-cursor task predicts feedback control in which motor

commands for the left hand (uL) depend on the state of both the left hand and

right hands (x̂L and x̂R , respectively). Reproduced with permission from Ref. [32].
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domain, structured variability can be observed in the
synchronisation of bimanual movements. For example,
when one hand is used to open a drawer and the other
to retrieve an object from the drawer, intermanual time
lags are small when the object is picked up, but variable
during other phases of the action [44].

Correlations between effectors are often attributed to
synergies (in an explanatory sense). In the context of
OFCT, however, structured variability emerges naturally
from task-dependent feedback control [18]. The regularis-
ation term of the cost function enforces the minimal inter-
vention principle: Deviations relevant to the external task
goal should be corrected, whereas deviations along task-
irrelevant dimensions need not be compensated and can
thus accumulate. The interplay of these two factors
induces structured variability. Importantly, OFCT holds
that this structure arises through feedback control rather
than reflecting inherent correlations between the feed-
forward commands to different effectors. Consistent with
this prediction, the negative correlation of the lateral hand
positions in the one-cursor task arises over the time course
of the movement (Figure 2c).
Initial gating mechanism
There are situations in which systematic correlations be-
tween effectors cannot be attributed to task-dependent
feedback control. For example, when the two hands are
used to reach simultaneously for two separate goals, OFCT
would predict independent control of the two movements.
However, strong correlations are observed in both reaction
time and initial acceleration [45,46]. This form of coupling
is generally considered a hard constraint in coordination
[10]: it is not easily modified by task requirements [47].
Indeed, it remained present even when the primary con-
nections between the two cerebral hemispheres were
absent, despite the fact that the human subjects exhibited
considerable independence of the two limbs once the move-
ments are initiated [48,49]. Thus, there appears to be a
general mechanism, probably subcortical [50], that syn-
chronises the onset of differentmovements, even if they are
unrelated. How can the existence of such a strong inherent
constraint be reconciled with OFCT?

We propose that, at least for related movements, a
coupling mechanism of this sort is necessary within the
control architecture assumed by OFCT. Consider the task
35
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of raising one’s arm quickly while standing freely. The
forces induced by the sudden movement of the arm are
destabilising; if large enough, the actor might fall over
backwards. To ensure stability, the motor system briefly
activates the ankle flexors to shift the centre of gravity
forwards, even before EMG changes are observed in the
agonists of the arm movement [51].

In the context of OFCT, coordination between effectors
is ensured because the commands of one effector depend on
the state estimates of another (Figure 2d). This state-de-
pendent mechanism is not sufficient for the coordination of
the initial motor commands, because, before the onset of
movement, there are changes in the respective state esti-
mates and, hence, no exchange of information between the
control processes. For accurate and fast movements, how-
ever, the initial bursts across different effectors need to be
finely coordinated in both time of onset and initial strength
[52].

How does OFCT solve this problem? In current simu-
lations, each effector starts to produce motor commands
simultaneously at time ‘zero’. Thus, the theory assumes
implicitly the existence of a common command that syn-
chronises the onset of all effectors recruited for the move-
ment. Other models of movement production include such
an initial gating mechanism as an explicit component. In
these models, a common go-signal (VITE model [53]) or an
internal phase keeper [54], specifies the time of onset and
the initial strength of activation across all involved effec-
tors. Although the neuronal substrate for an initial gating
signal remains unknown, it is clear that such amechanism
is required for successful coordination over and above the
state-dependent mechanisms implemented in current
OFCT models.

Movement-to-movement variability of the initial gating
mechanism will induce positive correlations between
different effects at the onset of the movement. We propose
that even unrelated movements, when initiated suffi-
ciently close together, will share the same gating mechan-
ism, resulting in the coupling and correlation of these
effectors. Future research is required to distinguish be-
tween inter-effector correlations that are due to task-de-
pendent coordinative feedback control and those that are
due to the influence of a common gating signal. OFCT in it
current form does not have an explicit mechanism tomodel
variability inmovement initiation.We expect that it will be
necessary to integrate such a concept for the theory to
account fully for the co-variance structure of human move-
ments.

Coordination through high-level state estimates
In OFCT, coordination is achieved by making the motor
commands for one effector dependent on the state of
another effector (Figure 2d). Such direct dependence is
appropriate when two effectors are biomechanically
coupled. Elbow and shoulder muscles need to compensate
mutually for the effects of interaction torques [22,55]. In
this case, the two joints always need to be controlled as a
single entity.

In other situations, the need for coordination arises
because two effectors act on the same task-relevant vari-
able even if the mechanical linkage between them is weak
36
or non-existent. Examples here include coordinated move-
ments of the fingers and arm to control the release of a ball
during throwing, the manipulation of a single object with
two hands, or the coordination of head and armmovements
when eating or drinking. In all of these situations, the
coordination of the effectors depends on the state of the
controlled object and the nature of the task.

We propose that coordination for such tasks is based on
higher-level state estimates of task-relevant variables (see
Ref. [56] for related ideas). Returning to our example of the
one/two-cursor task, the system would not only estimate
the state of each hand, but also the state of the controlled
cursor(s). In the two-cursor task, separate estimates for the
two cursors keep control independent (Figure 4a). In the
one-cursor task, a single state estimate leads to shared
bimanual corrections. Coordination would be maintained
even when the cursor was invisible because the common
state estimate of the inferred cursor position is determined
through a forward model that depends on the sensed state
of both hands (Figure 4b).

Such hierarchical control models (Figure 4a,b) [57] can
facilitate flexibility of control. When switching between
control regimes in the one- and two-cursor task, the system
need only change predictions about how the hands influ-
ence the movement(s) of the cursor(s). By contrast, if when
coordination is achieved directly through lower-level state-
estimates (Figure 2c,d), the motor system would have to
reconfigure flexibly how the left hand should react to
signals from the right hand with every change in task. A
recent study demonstrated the flexibility with which the
motor system can switch between different controllers, if
each situation is associated with a different manipulated
object [58].

For any constant task, the hierarchical and direct ways
of expressing a coordinative control law are basically
equivalent. However, the models make different predic-
tions in terms of how a learned coordination skill would
generalise to a novel task context. The direct model
(Figure 2c,d) predicts that coordination should generalise
in the reference frame of the state of the involved effectors
(e.g. joint coordinates), whereas the hierarchical model
(Figure 4a, b) predicts that coordination should generalise
in a reference frame defined by higher-level state variables.

Learning to throw a ball at different speeds provides a
clear example of this issue [59]. To throw a ball accurately,
the release of the ball by the fingers must be timed to the
forward movement of the arm [60]. What state estimate is
used for this coordination problem? The relationship be-
tween the state of the fingers and the azimuth of the
shoulder is not stable across different throwing speeds
(Figure 4c). A similar problem is evident when finger
position is plotted against a reasonable range of elbow
and shoulder joint angles. Moreover, the interval between
the armmovement and finger release varies systematically
with speed; as such, the motor system cannot rely on an
internal timing mechanism for this skill (see also Refs
[61,62]). The only variable that provides an invariant
relationship is the angular position of the hand in external
space (Figure 4d). Thus, to learn a control policy that is
flexible with respect to the speed of throwing, the motor
system should estimate hand position in external space



Figure 4. Coordination between effectors based on higher-level state estimates. (a) Control signals to the left hand (u1) depend on a state estimate of that hand (x̂1) and of

the controlled object (x̂C ). The higher-level state is estimated through a dynamic forward model based on information from the effector (dashed curve). (b) In the one-cursor

task, both hands influence the state estimate for the common cursor and, thus, the motor commands to the two hands become coordinated. (c) During throwing, the

opening of the fingers to release the ball (y axis) is not invariant across slow and fast throws, when plotted against the shoulder azimuth. (d) Hand opening is invariant

across throwing speeds only when plotted against the angular position of the hand in space. Reproduced with permission from Ref. [59].
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and use this to control the timing of the release. This
example also emphasises that accurate state estimates
require a predictive forward model given the speed of
arm rotation; feedback loops would be insufficient given
processing delays. Consistent with this hypothesis, the
timing of ball release is properly adjusted following per-
turbations to the arm as long as the perturbation occurs at
least 100 ms prior to the opening of the fingers [63].

Similarly to throwing, finger-arm coordination during
grasping is based on an estimate of how far the hand has
travelled towards the object, rather than on lower-level
estimates of the state of the arm or on internal estimates of
time [62,64,65]. Another example comes from bimanual
object manipulation, where one hand has to learn to com-
pensate for forces produced by the other. This skill gener-
alises across the workspace in extrinsic or object
coordinates [66] rather than in joint coordinates. By con-
trast, following adaptation to a force field, generalisation
within each arm is observed in intrinsic, joint-based coor-
dinates [67].

Considering the role of higher-level state estimates in
coordination provides an important link to numerous
experimental results demonstrating that the symmetry
constraint observed in bimanual coordination [68]
depends on perceptual variables and task demands [69–

71]. More generally, many demonstrations of constraints
in bimanual coordination appear to reflect limitations in
the simultaneous estimation of high-level, task-relevant
states [9], rather than hard-wired coordination con-
straints between the two hands. The human coordination
system has evolved to achieve single goals flexibly using
many effectors rather than to achieve multiple goals sim-
ultaneously.
Current limitations and outlook
Here, we have outlined how OTC, especially OFCT, pro-
vides a powerful tool for understanding coordination. It is
important to emphasise that OCT (and OFCT) as a theor-
etical framework is underspecified and has limitations in
terms of generating testable predictions. It is possible to
explain any behaviour as ‘optimal’ if the cost function can
be chosen without restriction. To avoid circularity, the cost
function needs to be specified a priori and tested across
different experimental contexts.

We have also highlighted the importance of specifying
the state estimates that subserve coordination (e.g. joint-
based or high-level), as well as differentiating between
elements within a hierarchical control scheme that can
be modified in a task-dependent fashion from those that
are hard wired. Furthermore, we have stressed the import-
ance of integrating a plausible model of movement
initiation, and the variability arising from this process,
into OFCT. We expect that future exploration of these
issues will serve to constrain predictions derived from
an OFCT framework, and make it possible to relate the
control processes to their underlying neural substrate.

Another important area of research is how coordinated
movements are learned. OCT (and OFCT) can only tell us
what the optimal solution to a problem should be, but not
how this solution is learned. Is there as neural representa-
tion of the overall cost of the movement [72]? Or can cost-
functions be optimised in a distributed fashion? Which
neural mechanisms are involved in the optimisation of
cost functions?

Finally, OFCT teaches us that flexibility in the nervous
system does not involve the recall of rigid motor com-
mands, but rather a flexible reconfiguration of how the
37
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brain reacts to environmental stimuli. In that, the problem
of motor control is closely related to the problem of flexible
cognitive control [73].
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