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Wiestler T, McGonigle DJ, Diedrichsen J. Integration of sensory
and motor representations of single fingers in the human cerebellum.
J Neurophysiol 105: 3042–3053, 2011. First published April 6, 2011;
doi:10.1152/jn.00106.2011.—The cerebellum is thought to play a key
role in the integration of sensory and motor events. Little is known,
however, about how sensory and motor maps in the cerebellum
superimpose. In the present study we investigated the relationship
between these two maps for the representation of single fingers.
Participants made isometric key presses with individual fingers or
received vibratory tactile stimulation to the fingertips while undergo-
ing high-resolution functional magnetic resonance imaging (fMRI).
Using multivariate analysis, we have demonstrated that the ipsilateral
lobule V and VIII show patterns of activity that encode, within the
same region, both which finger pressed and which finger was stimu-
lated. The individual finger-specific activation patches are smaller
than 3 mm and only show a weak somatotopic organization. To study
the superposition of sensory and motor maps, we correlated the
finger-specific patterns across the two conditions. In the neocortex,
sensory stimulation of one digit led to activation of the same patches
as force production by the same digit; in the cerebellum, these
activation patches were organized in an uncorrelated manner. This
suggests that, in the cerebellum, a movement of a particular finger is
paired with a range of possible sensory outcomes. In summary, our
results indicate a small and fractured representation of single digits in
the cerebellum and suggest a fundamental difference in how the
cerebellum and the neocortex integrate sensory and motor events.

functional magnetic resonance imaging; multivoxel pattern analysis;
motor cortex; sensory cortex

THE CEREBELLUM IS THOUGHT to play an important role in sensory-
motor integration (Bastian 2006; Wolpert et al. 1998). In this
study we have used functional magnetic resonance imaging
(fMRI) to study in detail the sensory and motor representations of
individual fingers in the human cerebellum. Previous studies have
shown that both the anterior and posterior motor regions of the
human cerebellum are activated during hand movements
(Grodd et al. 2001; Rijntjes et al. 1999). The same regions are
also activated, albeit to a much lesser degree, during noxious
stimulation (Casey et al. 1996), passive finger movements
(Mima et al. 1999; Thickbroom et al. 2003), and vibrotactile
stimulation (Fox et al. 1985; Tempel and Perlmutter 1992). All
these studies, however, have left open the question whether the
cerebellum contains a representation of individual finger move-
ments comparable to those in primary sensory and motor

cortex (Indovina and Sanes 2001; Kaas et al. 1979; Merzenich
et al. 1987; Sur et al. 1982; Woolsey et al. 1979). If the human
cerebellum indeed contains such a map, we should be able to
detect different activity patterns for different fingers and to
determine how sensory and motor maps superimpose.

Because of the limits on spatial resolution of fMRI, the
detection of small and potentially unordered representations
constitutes a challenge. In the primary somatosensory cortex
(S1), digit representations are arranged in an orderly sequence
of patches with a diameter of 4–5 mm and thus can be detected
by comparing the activations maps for each finger (Sanchez-
Panchuelo et al. 2010). In the cerebellar cortex, however, such
finger representations may be smaller and less well organized.
For example, based on data from the rat whisker system in
Crus I, some authors have argued that the cerebellar sensory
representations are small and fractured (Bower and Woolston
1983). Others have argued for a more systematic organization.
For example, stimulation of the forepaw of cats activates an
ordered sequence of parasaggital cerebellar microzones, groups of
Purkinje cells with the same climbing fiber input (Apps and
Garwicz 2005). These microzones also receive matched mossy
fiber input (Pereira et al. 2009). There is, however, general
agreement that such representations are smaller than those found
in the cerebral cortex.

It should be stressed at this point that although our knowl-
edge of the origin of the cerebellar blood oxygen level-
dependent (BOLD) signal is still limited, recent evidence
indicates that mossy fiber and parallel fiber signaling is the
main determinant of activity-induced BOLD changes (Attwell
and Iadecola 2002; Diedrichsen et al. 2010; Zhang et al. 2003).
Thus BOLD signal from the cerebellar cortex most likely
reflects the spatial patterns of sensory and motor input to the
granule cell system.

Given the small spatial scale of digit representations, how
can we best detect them using fMRI? Although the cerebellum
may lack an orderly map of individual digits, groups of
microzones that respond preferentially to a particular finger are
likely clustered together in space. We refer to such groups as
“digit patches” and stress, first, that there may be multiple
patches for the same digit within a region; second, that these
may overlap with patches for other digits; and third, that they
may be arranged without any somatotopic gradient. Because
the spatial arrangement of such digit patches is likely to differ
across individuals, they cannot be detected using traditional
univariate analysis. Such analysis would require the existence
of areas in which there are systematic activation differences
between fingers across participants, e.g., a region where, rela-
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tive to other fingers, thumb movement always leads to more
activation.

In contrast, local multivariate pattern analysis (Kriegeskorte
et al. 2006) can be used to identify regions in which partici-
pants show significantly different finger-related patterns, even
if these do not superimpose in a finger-by-finger fashion in a
group analysis. Furthermore, multivariate analysis can also
identify regions in which these finger-specific patterns consist
of local signal increases and decreases, without changing the
activation level of the region overall (Fig. 1A).

Therefore, this method relates more closely to the criterion
employed in neurophysiology, where a region is considered to
be involved in a task if its neurons modulate (i.e., either
increase or decrease) their firing rates in relation to an exper-
imental variable, even if the average activity in the region does
not change and if the spatial distribution of these modulations
differs across individual brains. Multivariate analysis has been
successfully employed in the visual system to study neural
representations that are small and do not systematically align
across individuals (Cox and Savoy 2003; Haxby et al. 2001;
Haynes and Rees 2005a; Kamitani and Tong 2006; Krieges-
korte et al. 2008b; Swisher et al. 2010); however, this is the
first application of this technique in the cerebellum.

We used an event-related design (Fig. 1B) with a stimulation
and a motor condition. In designing the tasks, we attempted to
minimize the risk of movement in the stimulation condition
and the contribution of sensory information in the motor
condition. We therefore asked participants to produce repeated
isometric presses with one finger (Fig. 1B) against a key
equipped with a force sensor. Thus the main residual sensory

information in the motor condition would be the stimulation of
Golgi tendon organs and Merkel receptors. In the stimulation
condition, we delivered a 100-Hz vibrotactile stimulus to the
glabrous skin of a single fingertip, thereby activating mostly
Meissner and Pacinian receptors (Johnson 2001) and minimiz-
ing the risk of overt movement.

Using multivariate analysis, we were able to reveal overlap-
ping sensory and motor representations of single digits in two
ipsilateral regions, one in lobule V and one in lobule VIII. We
then studied the characteristics of these digit representations in
detail. First, we compared the results of the multivariate anal-
ysis with traditional mass-univariate approaches, showing a
part-dissociation between finger-specific modulation of activa-
tion patterns and the overall size of the activation. We then
asked our main question of how sensory and motor maps
superimpose. Finally, we have described the size of the digit
patches in the cerebellum and test for possible somatotopic
gradients. In all these analyses, we compared the characteris-
tics of the cerebellar digit representations to those found in S1
and M1. Our results suggest a fundamental difference in the
representation of digits in the human neocortex and the cere-
bellum, with important implications on how these regions
relate sensory and motor information.

METHODS

Participants. Two female and five male neurologically healthy
volunteers participated in the study. All participants were right-
handed, and their ages ranged from 20 to 22 yr. The ethics committee
of the School of Psychology, Bangor University, approved all exper-
imental procedures. The cortical data of these participants were used

Fig. 1. Experimental methods. A: detecting
finger representations using multivariate
analysis. Each row indicates the activation
pattern induced by finger presses or sensory
stimulation in 2 hypothetical neural regions.
In each region, there is a finger-specific
blood oxygen level-dependent (BOLD) pat-
tern that is replicable across multiple imag-
ing runs. The searchlight (shaded box)
method picks continuous groups of voxels
and detects the presence of a local informa-
tive voxel pattern (classification accuracy).
The region at left has only finger-specific
BOLD increases and therefore shows in-
creased activity when all fingers are com-
pared against rest; the region at right shows
both signal increases and decreases, which
cancel each other out such that there is no
overall evoked activity. Multivariate analysis
can detect the finger-specific modulation of
neural activity in both cases. B: in the motor
condition, participants pressed keys with the
finger indicated by the precue (T, thumb; I,
index finger; M, middle finger; and P, little
finger) 5 times, paced by an asterisk. In the
sensory condition, a vibratory stimulus of
100 Hz was applied 5 times to the indicated
fingertip. In each imaging run, both condi-
tions were performed in counterbalanced or-
der separated by short rest phases.
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as example data in a method article describing the surface-based
searchlight technique (Oosterhof et al. 2010), and both cortical and
cerebellar data were used in a technical note on the decomposition
method (Diedrichsen et al. 2011).

Apparatus. To stimulate individual fingertips and to record indi-
vidual finger forces, we developed an fMRI-compatible device with
five piano-style keys. Each key had a small groove into which the
fingertip could be placed. Within the groove was a hole through which
a small pin (1-mm radius) could be vibrated with finely controlled
frequency and amplitude using a piezo motor. The forces applied to
the keys were recorded via quantum tunneling composite pills (ref.
N18BU; Maplin Electronics, Rotherham, UK). The stimulation box
was controlled from outside the scanning room, with a filter panel
preventing leakage of radio frequency (RF) noise into the MR envi-
ronment. The visual instructions and feedback were projected from
outside the scanner room onto a back-projection screen, which was
viewed by the participants through a mirror.

Scan acquisition. The imaging data were acquired on a Phillips
Achieva 3T scanner (Philips, Best, The Netherlands). For the func-
tional scans, we used an echo planar imaging sequence (EPI) with a
voxel size of 1.8 � 1.8 � 2 mm3. Data acquisition for the cerebellum
and the cerebral cortex took place in two separate sessions. Each
region was covered with 38 axial slices (no gaps; TR � 2.7s), using
sensitivity encoding with a factor of 2 (Pruessmann et al. 1999). Runs
started with 6 dummy scans and consisted of 128 data images. The
T1-weighted structural images were acquired with a volumetric mag-
netization-prepared rapid gradient echo (MPRAGE) sequence using a
voxel size of 1 � 1 � 1 mm3.

Procedure. Before the scan acquisition, all participants underwent
a training session of four runs in which they were familiarized with
the task. They then participated in two counterbalanced scanning
sessions (1 for the cortex, 1 for the cerebellum), separated by at least
12 h. Each scanning session comprised 7 runs, each of which con-
sisted of 16 force trials and 16 stimulation trials, separated by a pause
of 16.2 s (Fig. 1B). The sequence of conditions was counterbalanced
across runs and participants. A single trial lasted 8.1 s, and within each
condition, every finger was repeated four times in randomized order.
To obtain enough repetitions for each finger, we used only digits 1, 2,
3, and 5 of the right hand and excluded the ring finger from the
experiment. Each trial started with a red letter on the screen to indicate
the digit to be pressed or stimulated. During the motor condition,
participants made five isometric key presses with the indicated finger.
Presses were paced by the appearance of a white asterisk on the screen
every 1.35 s and required a force �1 N to be registered. The asterisk
turned green if participants pressed the correct finger and red other-
wise. In the stimulation condition, we applied a vibratory stimulus
every 1.35 s for 0.94 s, five times to a single fingertip. The stimulation
frequency was 100 Hz, with small pauses of 20 ms inserted every 110
ms to reduce the possibility of central or peripheral habituation. As in
the motor condition, a white asterisk was presented as a visual pacing
signal. The onset of the vibratory stimuli was jittered within an
interval of �200 to �200 ms around the presentation of the asterisk
to reduce habituation. The stimulation intensity was individually
adjusted so that the subjective stimulation intensity was comparable
across fingers.

Imaging data analysis. We analyzed the functional imaging data
using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) (Friston et al. 1993)
and custom-written routines in MATLAB (The MathWorks, Natick,
MA). We first realigned the slices in time to correct for the ascending
order of slice acquisition. The images were spatially realigned to the
first functional image of the session using a six-parameter rigid-body
transformation. To remove slowly varying trends, we high-pass fil-
tered the data with a cutoff frequency of 1/128 s. The spatially
unsmoothed data were fitted using a linear model with regressors that
represented the four trials of each finger (separately for motor and
stimulation conditions) within each run. These regressors were boxcar
functions (length 8.1 s), convolved with the standard hemodynamic

response function. The resultant beta estimates (regression coeffi-
cients) indicate how much each voxel changed its activation for each
run, condition, and finger and were used as data for the multivariate
analysis. The functional images were coregistered to the individual
anatomic images (Collignon et al. 1995). Because we wanted to
distinguish between functional data from the primary motor and
sensory cortices, special care was taken that the alignment was exact
at the central sulcus, and hand correction was applied as necessary.

For the group analysis, we applied three different methods of
intersubject alignment. First, the cortical data were normalized by
aligning the individual anatomic images to the Montreal Neurological
Institute (MNI) template with a nonlinear segmentation and normal-
ization algorithm (Ashburner and Friston 2005). Second, the cortical
surface of left hemisphere of each subject was reconstructed, inflated
to a spherical representation, and finally aligned to an average surface-
based atlas using the program Freesurfer (Dale et al. 1999). This
normalization ensured a good overlap of the fundus of the central
sulcus across participants. Third, for the cerebellar data, we isolated
the cerebellum from the rest of the brain and aligned the data to a
high-resolution cerebellum-only template (SUIT) (Diedrichsen 2006).

Classification. To detect digit representations in the cerebellum and
neocortex, we selected a group of spatially contiguous voxels and
tested for each participant individually and separately for the motor
and stimulation conditions whether the activity patterns across these
voxels differed significantly between digits. This was achieved using
a linear classifier (Haxby et al. 2001; Haynes and Rees 2005a; Misaki
et al. 2010).

Inputs to the classifier were the 4 � 7 pattern vectors xi, the beta
estimates for a set of N voxels for each finger and run. We trained the
classifier using 24 pattern vectors from 6 runs. From these training
data, we estimated the overall N � N voxel-covariance matrix � and
the N � 1 mean vectors of the four classes (fingers) �c. Because �
was ill-conditioned, we regularized the covariance estimate by adding
a small constant (1% of the mean of the diagonal elements) to the
diagonal. This regularization makes the covariance matrix invertible
while still retaining the advantage that noisy or highly correlated
voxels are downweighted (Pereira et al. 2009).

The discriminant function for each class (gc) is, up to a constant,
the log-likelihood that the pattern x belongs to class c:

gc�x� � �c
T ��1

x �
1

2
�c

T ��1
. (1)

As test patterns, we used the four remaining digit patterns of the 7th
run. We assigned the test pattern x to the class c with the maximum
likelihood:

ĉ � arg
c
max�gc�x�� . (2)

By retraining and cross-validating over all possible test and training
sets, we determined the average cross-validation accuracy each set of
voxels. All classification accuracies reported in this article are based
on this cross-validation approach, thereby providing a statistically
unbiased measure of how much information a voxel neighborhood
(see below) contains about which finger moved or was stimulated.

Volume-based searchlight. For the identification of digit represen-
tations in the cerebellar cortex, we utilized a volume-based searchlight
approach (Kriegeskorte et al. 2006). The data for the classification
came from a 6-mm sphere around a chosen center voxel, which
included �145 voxels. We restricted all calculations to cerebellar
voxels using an automatic masking algorithm provided by the SUIT
toolbox (Diedrichsen 2006). We calculated the classification accuracy
for each group of voxels and assigned it to the center voxel of the
sphere. By moving the sphere through the whole volume, we gener-
ated an accuracy map. Voxels that had less than 10 voxels as a
neighborhood were excluded from the analysis.

Surface-based searchlight. The two main regions for digit repre-
sentation in the cerebral cortex are the primary motor and somatosen-
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sory cortices. Whereas anatomically these regions are clearly sepa-
rated by the central sulcus, they abut one another in volume. A
volume-based searchlight, as employed for the cerebellum, would
therefore combine voxels from both sensory and motor cortices into a
single classifier. To measure the information content of these regions
separately, we used a surface-based searchlight method (Oosterhof et
al. 2010). We started with a representation of the pial surface and the
gray matter-white matter boundary, which were generated by the
program Freesurfer (Dale et al. 1999). For each surface node, we then
determined all nodes within a certain radius, with the distance mea-
sured along the intermediate surface (Peyre 2008). The classification
was then based on voxels that enclosed on of the selected nodes, either
from the white or pial surface. For each center node, we adjusted the
radius such that each searchlight contained 145 voxels. We then
assigned the cross-validation accuracy of the classifier as a measure of
information to the center node. By moving the center node across the
surface, we built up a surface map of classification accuracies.

Regions of interest. To compare the organization of digit represen-
tations across different regions, we utilized an anatomically defined
region-of-interest approach. We focused our analysis on four regions
that revealed significant digit representations: the left primary somato-
sensory and motor cortices and the right lobules V and VIII of the
cerebellum. The cortical regions were defined on a surface represen-
tation, guided by anatomic cytoarchitectonic evidence (Geyer et al.
2001). For the primary motor cortex, we selected the region between
the fundus of the central sulcus and the crest of the precentral gyrus,
encompassing approximately Brodmann area 4. For the primary
somatosensory cortex, we selected the region between the fundus of
the central sulcus to the crest of the postcentral gyrus, encompassing
Brodmann area 3b and parts of 3a and 1. Both regions were defined
on the surface representation along the whole length of the central
sulcus. As for the surface-based searchlight, we then selected all
voxels that included any node of the region either on the pial or white
matter surface. Despite this surface-based definition, there was still a
single layer of voxels in the middle of the central sulcus that was
included in both regions. To minimize the overlap, we therefore
excluded these voxels from both the S1 and M1 regions of interest.

The cerebellar regions were defined based on a probabilistic atlas
of the cerebellum (Diedrichsen et al. 2009). Because we were only
interested in functional signal from gray matter, we only included
voxels that were assigned a probability of �0.1 of being gray matter
in the probabilistic tissue segmentation (Ashburner and Friston 2005).
This relatively low threshold ensured that all voxels that partially
consisted of gray matter were included while rejecting voxels that
were clearly situated in white matter.

Representational similarity-pattern component model. To assess
the superposition of the sensory and motor maps, we calculated the
correlations between stimulation and motor pattern (Haynes and Rees
2005b; Kriegeskorte et al. 2008a; Mur et al. 2009; Norman et al.
2006). We compared the average correlations between the stimulation
and motor pattern for the same digit with the correlation for different
digits.

When comparing correlations, or differences of correlations, across
different regions, it is important to account for other factors that can
influence these coefficients: For example, regions with high levels of
fMRI noise will generally show lower correlations and lower differ-
ences of correlation. Alternatively, strong activation common to all
conditions may increase correlations artificially. To account for these
factors, we utilized a newly developed method that decomposes
patterns into different components (Diedrichsen et al. 2011). The 56
measured patterns (yi,j,k , ith condition � jth digits � kth run) were
modeled as the sum of a component that was common to all digits
within each condition (ci), a component that was unique to the finger
in each condition (fi,j), noise components shared by all trials in a run
(ri,k) , and an independent noise component (�i,j,k):

yi,j,k � ci � f i,j � ri,k � �i,j,k. (3)

The variance and covariance of these components across voxels was
then estimated from the data. The finger components fi,j capture the
patterns unique to force production or stimulation of each digit. We
estimated the variance for the stimulation, �f1

2, and for the motor
condition, �f2

2 , and the covariance of patterns across the two condi-
tions for the same digit, cov (f1,j, f2,j) � �f . Because the nonspecific
determinants of the correlations are captured in the pattern component
for the condition, noise, and run, the corrected correlation coefficient
�f / (�f,1, �f,2) can serve as a direct measure of the similarity of finger
patterns, normalized by the strength of the finger patterns in this
region.

Using Monte Carlo simulations, we ensured that these estimates, in
contrast to the sample correlations, were not influenced by changes in
noise level, number of informative voxels, or spatial size of digit
patches (Diedrichsen et al. 2011). Thus the new method allowed us to
compare, across different anatomic regions, how similar the pattern
evoked by isometric presses with a digit was to the pattern evoked by
stimulating the same digit.

Spatial correlations. To compare the size of finger patches quan-
titatively across regions, we used the estimates of the pattern compo-
nents (Eq. 3) to calculate the spatial covariance between each pair of
voxels within a region. For example, for the finger component, the
covariance estimate between voxel n and voxel m is

cov f �n, m� �
1

4�
i�1

4

� f i,j
n � f�i,j�� f i,j

m � f�i,j� . (4)

We then averaged the covariance across voxel pairs depending on
their spatial distance. We used bins from 0.1 to 2.5 mm (directly
neighboring) or 2.5 to 3.6 mm (diagonally neighboring), up to a total
distance of 23.8 mm. We normalized the covariance by the variance
to obtain a spatial autocorrelation function.

The smoothness of the underlying pattern component can be
expressed using the full-width half-maximum (FWHM) of the spatial
convolution kernel, which when used to smooth spatially independent
data would result in the best fitting spatial autocorrelation function
(Diedrichsen et al. 2011). Again, Monte Carlo studies were conducted
so that the width of the spatial kernel could be estimated with
relatively high accuracy, independent of the level of noise.

Somatotopy. Within the digit-related area of each anatomically
defined region of interest, we searched for a somatotopic organization.
As for the other analyses, we defined the digit-related area by
selecting the voxels with the 20% highest classification accuracy in
the region, and from these we selected the biggest spatially contiguous
cluster. For each condition, we assigned a weight to every voxel i for
every finger condition j using a softmax function across all fingers:

wi,j �
exp�k	i,j�

�
m�1

4

exp�k	i,m�
(5)

In the extreme case, (k �� 0), the function would assign a value
of 1 to the finger for which the voxel was most highly activated and
a value of 0 to all other fingers. Considering the likely overlap of
different digit patches, k was set to 0.8, resulting in a softer assign-
ment. Similar results were obtained for a range of k from 0.6 to 1. The
center of gravity (CoG) for each finger was calculated as the mean
coordinate of all voxels weighted by wi,j. To be able to compare
locations across participants, we transformed the individual voxel
coordinates to a standard atlas space: SUIT (Diedrichsen 2006) for the
cerebellar regions and MNI152 for the cerebral regions.

RESULTS

Finger representations in the human cerebellum. We ex-
pected relatively small, and possibly unordered, sensory and
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motor representations in the cerebellar cortex. To detect such
representations, we used multivariate analysis to obtain a digit
information map. This map showed whether the activity pat-
terns evoked by different digits differed systematically from
each other and therefore revealed whether the region encoded
for (or contained information about) the pressed or stimulated
finger.

In the cerebellum, the resulting maps of cross-validation
accuracy showed two areas with above-chance accuracy in the
ipsilateral, right hemisphere for both motor and stimulation
conditions (Fig. 2A). These clusters were located in lobule V
and lobule VIII and were significant in a random-effects group
analysis, corrected for multiple tests (Table 1).

We also found a region in right Crus I that crossed the
threshold of statistical significance in the stimulation condition
(Table 1). However, the same region was not present in the
motor condition. Although it is possible that there exists a third
region for tactile processes, we did not consider this region
further, because our main aim was to investigate the relation-
ship between sensory and motor maps. In summary, our results
show the existence of at least two overlapping motor and
sensory representations of individual digits in the cerebellar
cortex.

Finger representations in the human neocortex. We con-
ducted a similar analysis for the neocortical data. We found an
extended area with high classification accuracy along the
central sulcus (Fig. 3, A and B). The main part of both sensory
and motor representation is located in S1, encompassing a

substantial portion of the postcentral gyrus. We also saw a digit
representation in M1, with the best classification accuracies
located at the bend of the precentral gyrus, the so-called hand
knob (Yousry et al. 1997).

We localized neocortical digit representations using a sur-
face-based searchlight (see METHODS). This technique mini-
mizes the mixing of voxels from different sides of the central
sulcus within a single classifier (Oosterhof et al. 2010). There-
fore, we could map the informative regions in M1 and S1 fairly
independently.

Evoked activity vs. information content. To compare the
cortical and cerebellar digit representations quantitatively, we
defined regions of interest for cerebellar lobules V and VIII,
M1, and S1 based on anatomic criteria (see METHODS) for each
participant. Within these regions, we then identified the digit
representation for each condition by selecting the 20% of
voxels with the highest accuracies in each region. The infor-
mation content (assessed by average classification accuracy)
for these voxels was substantially higher in the neocortical
compared with the cerebellar regions (Fig. 4A). The classifi-
cation accuracy in S1 was slightly higher for the sensory than
for the motor condition. In contrast, the motor condition
yielded slightly higher accuracies in lobule V. However, none
of the differences between the conditions was significant [for
all regions, t(6) � 1.704, P � 0.139]. Thus the strength of the
systematic modulation of different neural patches, as assessed
by the classification accuracy, was roughly matched across the
motor and stimulation conditions.

Fig. 2. Digit representations in the human
cerebellum. Two digit representations in the
human cerebellum are shown, revealed using
local multivariate pattern analysis. A: multivar-
iate analysis shows 2 regions (lobule V and
VIII) that contain information about individual
fingers in the motor (red) and stimulation
(blue) conditions. The group-average maps
show the cross-validated classification accu-
racy (threshold 34%, chance 25%). B: tradi-
tional mass-univariate analysis shows strong
responses in the motor (red), but not in the
stimulation (blue), condition. Group t-maps of
the evoked BOLD signal for task vs. rest in
motor (red) and stimulation (blue) conditions
are shown at an uncorrected threshold of t(6) �
3.14, P � 0.01. The results are presented on
axial (z � �49), parasaggital (x � 21), and
coronal (y � �52) slices of the SUIT template
(Diedrichsen 2006).

Table 1. Cerebellar regions showing significant classification accuracy across participants

Side Area Size, cm3 P(cluster) Peak t(6)

SUIT

x y z

Motor condition

Right Lobule V 0.84 0.001 5.94 16 �54 �24
Right Lobule VIII 0.4 0.036 8.46 10 �70 �40

Stimulation condition

Right Lobule V 0.53 0.008 6.29 22 �54 �26
Right Lobule VIII 0.38 0.042 7.04 28 �44 �50
Right Crus I 0.41 0.029 10.56 40 �50 �38

Random-effects analysis of classification accuracy in motor and stimulation conditions. Clusters are identified at an uncorrected threshold of P � 0.004, t(6) � 3.89,
and corrected for multiple comparisons over the volume of the cerebellum using the cluster size (Worsley et al. 1996). The coordinates x, y, and z reflect the location
of the peak of the cluster in SUIT space (Diedrichsen 2006).
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In contrast, the overall task-related activity (averaged over
all digits and compared with rest, Fig. 2B) differed substan-
tially between conditions. In the motor condition, we found
strong activity increases in right hemispheric lobule V and
VIII, bilaterally in hemispheric lobule VI, and in the vermal
regions of lobule VI and VII. For sensory stimulation, how-
ever, we observed no significant evoked activity in the cere-
bellum. Even when we lowered the threshold to an uncorrected
level of P � 0.01, we saw no clusters above the size of 0.13
cm3 (corresponding to a cluster-size P value of 0.997, cor-
rected for multiple comparison across the cerebellum).

To further quantify this observation, we extracted the aver-
age percent signal change in the digit representations, which
were defined as before (Fig. 4B). Isometric finger presses led to
robust signal changes in all regions [all t(6) � 3.86, P �
0.002], whereas sensory stimulation did not [all t(6) � 2.11,
P � 0.078]. In the informative region of lobule V, sensory
stimulation even led on average to slight signal decreases
compared with rest. This finding is consistent with previous
imaging studies, which found no significant or only small
signal increases during light tactile stimulation (Fox et al.
1985; Tempel and Perlmutter 1992).

Our results show that the degree to which a region increases
its activity overall and the degree to which it modulates the
local activity pattern based on the digit involved are partly
dissociated. In the motor condition, regions with highly infor-
mative patterns also show high overall activity (Fig. 1A, left).
In the stimulation condition, the informative regions did not
show large increases in overall BOLD signal during task
performance compared with rest. Despite this, the region
showed strong finger-specific modulation. Thus we conclude
that this modulation consisted of both finger-specific increases
and decreases, which canceled each other out when averaged
across digits (Fig. 1A, right).

Integration of sensory and motor information. Our group
analysis (Fig. 2) indicates that the areas that represent force
production and stimulation of single digits overlap macroscop-
ically in the same areas, both the neocortex and the cerebellar
cortex. But how is sensory and motor information integrated in
these regions? Specifically, how do activation patterns caused
by exerting force and stimulation superimpose? For example, it
is possible that the patches of neurons that respond to stimu-
lation of a certain finger also respond to the isometric presses
with the same finger. Alternatively, force production and stim-
ulation may activate separate patches that are independently
arranged. In such an organization, a patch that is activated by
a ring finger press would not necessarily be paired with a patch
that is activated by ring finger stimulation but might be located
right next to a patch that is activated by stimulation of the

Fig. 3. Digit representation in primary motor
(M1) and somatosensory cortex (S1) revealed
by local multivariate pattern analysis. The
group-average maps show the cross-validated
classification accuracy on an inflated cortical
surface for motor (A) and stimulation (B) con-
ditions. Accuracy is shown at a 48% threshold.
CS, central sulcus; PoCS, postcentral sulcus;
SFS, superior frontal sulcus.

Fig. 4. Dissociation of information content and evoked activity. The digit
regions were identified as the voxels with the 20% highest classification
accuracies within the anatomically defined regions of interests. A: average
classification accuracy for stimulation and motor conditions. B: average per-
cent signal change (compared with rest) in the same regions. Error bars
indicate between-participant standard error.
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thumb. The use of multivariate analysis allows us to distin-
guish between these two alternatives.

To assess the similarity between the patterns evoked by
force production and stimulation, we correlated the activation
patterns of two conditions across different voxels (Krieges-
korte et al. 2008a). To restrict our analysis to the region that
was informative for both motor and stimulation conditions, we
tested for differences between the fingers and averaged the
resultant F values across motor and stimulation conditions. We
then picked 20% of the voxels with the highest values. If motor
and sensory representations of individual digits were mapped
on top of each other, the correlation between stimulation and
motor patterns from the same digit should be higher than the
correlation between patterns of different digits. If the maps
were organized in an independent fashion, no difference in
correlation should be present.

Our results show a clearly significant difference between
same-finger and different-finger correlations (Fig. 5A) for S1
[t(6) � 5.18, P � 0.0002] and M1 [t(6) � 4.16, P � 0.006] but
no significant difference for lobule V [t(6) � 1.90, P � 0.11]
and only a small difference for lobule VIII [t(6) � 2.94, P �
0.026]. Although these results may suggest weaker correlations
between sensory and motor maps in the cerebellum than in the
neocortex, we cannot simply compare correlations, or differ-
ences between correlations, across different regions. This is
because factors other than the similarity of sensory and motor
representations influence these coefficients. For example, if the
fMRI data were noisier in one region, or if there were fewer
informative voxels in that region, correlations, and difference
in correlations, would be lower. To account for these effects,
we decomposed the observed patterns into different compo-
nents, each of which has characteristic variance (or power)
across voxels (Diedrichsen et al. 2011). After accounting for
components of no interest, we could then directly compare the
correlation between the finger-specific components for stimu-
lation and motor conditions.

Our decomposition method indeed showed that the esti-
mated variance of the noise component was 2.5 times higher in

the cerebellum than in the neocortex (Fig. 5B). This effect
likely reflects the larger exposure to physiological noise and
lower sensitivity of the coil array for subtentorial regions. In
contrast, the variances of the patterns encoding specific fingers
were roughly equivalent across regions (Fig. 5C).

Having accounted for these effects, we could now directly
compare the similarity of motor and stimulation patterns for the
same finger across regions (Fig. 5D). In the neocortex, the
corrected correlation coefficient ranged between 0.12 and 0.70.
In contrast, the corresponding correlations for the two cerebel-
lar regions were significantly smaller than in the neocortex
[t(6) � �4.259, P � 0.005]. Thus this analysis confirms our
initial finding with uncorrected correlations was not simply due
to increased noise level: In neocortical regions, stimulation and
motor conditions must have activated patches of neurons that
overlap in a finger-specific fashion. In contrast, in the cerebel-
lum, patches that were activated in the motor and stimulation
conditions for one particular finger must have neighbored
patches that were activated by the stimulation of a different,
unrelated finger. These results indicate a fundamental differ-
ence in how sensory and motor events are integrated in cere-
bellar and neocortical digit areas.

Size of finger patches. How large are these putative finger
patches in the human cerebellum? Although the size of digit
patches in S1 can be visually estimated to be between 4 and 6
mm (Nelson and Chen 2008; Sanchez-Panchuelo et al. 2010),
the spatial extent of such patches cannot be assessed easily in
the more irregular representations in the cerebellum or M1.
One way to quantify the spatial size of digit representations is
to calculate the correlation between finger-specific activations
(see METHODS) for each pair of voxels within an informative
region. These correlations can then be plotted as a function of
the spatial distance between the voxel pair. If stimulation of
each finger activates larger spatially contiguous groups
of voxels, the finger effects should be correlated over longer
spatial distances (Fig. 6A). In contrast, if the patches represent-
ing each digit are small (Fig. 6B), the spatial correlations
should fall rapidly to zero as spatial distance increases. Indeed,

Fig. 5. Representational similarity analysis
indicates different arrangement of sensory
and motor maps in cortex and cerebellum.
A: correlations between average stimulation
and motor patterns for the same finger or for
different fingers, calculated in digit regions
of cerebellar lobule V and VIII, M1, and S1.
B: results from variance decomposition of
the correlations in A. Trial-by-trial noise (��

2)
is increased in the cerebellum compared
with neocortical regions. C: the variance of
the patterns associated with individual fin-
gers (�f

2) for stimulation and motor condi-
tions. D: the normalized correlation between
motor and stimulation patterns of the same
digit, �f /(�fm�fs), is significantly reduced in
cerebellar regions.
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one can estimate the smoothness of the underlying maps (in
terms of FWHM) from these spatial correlation functions
(Diedrichsen et al. 2011).

The spatial correlations functions for the finger pattern
component (Fig. 6C) revealed that in cortical regions, finger
information was correlated over larger spatial distances than in
the cerebellum. The FWHM of the spatial kernel in S1 was
estimated to be 5 mm, and in M1, 4.1 mm, a small but
significant difference [t(6) � 2.97, P � 0.05]. This result was
specific to the finger effect and not found in the noise of
condition effect component (Diedrichsen et al. 2011). In con-
trast, the finger information in cerebellar voxels was essentially
uncorrelated [FWHM � 2.6 mm, significantly different from
cortical regions; t(6)�7.04, P � 0.05]. We only found positive
correlations for distances up to 3 mm (indicating neighboring
voxels). These correlations, however, can be accounted for by
head movements and the necessary spatial realignment, which
induces a statistical dependence between the data of neighbor-
ing voxels (Grootoonk et al. 2000). Thus we must conclude
that representations of single digits in the cerebellum are
smaller than our effective resolution of 3 mm.

Somatotopy of finger representations. Thus far, our results
indicate that digit patches in the cerebellum are small and
arranged such that motor and sensory representations correlate
with each other much less than in the neocortex. However, this
independent arrangement does not preclude the existence of a
systematical somatotopic gradient. Even in M1, where digit
movements are represented in a highly overlapping and inter-
digitated fashion (Rathelot and Strick 2006; Schieber 2002),
systematic differences in the centroids of activation for differ-
ent digits movements have been found (Indovina and Sanes
2001; Schieber and Hibbard 1993).

To test whether there is also a somatotopic gradient for
single digits in the human cerebellum, we determined for each
participant and condition the CoG of the activation caused by each
of the four tested digits (see METHODS). When these CoGs were
displayed for lobules V in a common atlas space (Fig. 7A), no
clear spatial organization could be seen. The center of the
informative region (as indicated by spatial average location of
the digit CoGs for each participant) varied substantially in
mediolateral direction between individuals (Fig. 7B). When the

CoGs for each subject were aligned by subtracting out this
overall center, however, a topography became apparent (Fig.
7C), with the CoG for D1 being located more medially and that
for D5 more laterally.

To test this observation statistically, we used a repeated-
measures MANOVA on the x, y, and z coordinates of the
CoGs. For the motor condition in lobule V, there was a
systematic difference in the location of the finger CoGs (see
Table 2). This result provides the strongest evidence to date for
a somatotopic gradient in the digit representations in the
cerebellum. Grodd et al.(2001) already reported a similar
ordering for lobule V; however, these observations were based
on a group map and were not statistically substantiated. No
systematic gradient could be found in lobule VIII.

We then compared the somatotopic gradient in lobule V with
those found in neocortical regions, using the effect size (
2) of
the MANOVA as a rough measure of the strength of the
gradient (Table 2). The strongest gradient was detected in S1,
with D1 being represented most ventrally and D5 represented
most dorsally (Nelson and Chen 2008; Sanchez-Panchuelo et
al. 2010). In comparison, the gradient found in lobule V was
substantially weaker and more similar in strength to the one
found in M1 (Fig. 7D), where a lateral to-medial D1–D5
gradient could be detected (see also Indovina and Sanes 2001).
Overall, our results argue for a weak somatotopic organization
of finger representations in the anterior, but not in the posterior,
hand region of the human cerebellum.

DISCUSSION

Our results establish the existence of two overlapping rep-
resentations for active force production and passive sensory
stimulation of single digits in the human cerebellum. One of
these is located in the ipsilateral hemisphere of lobule V and
the other one in lobule VIII. In the capuchin monkey (Cebus
paella), both of these regions have been shown to receive input
from, and provide output to, the hand area of primary motor
cortex (Kelly and Strick 2003).

The identification of digit representations that are close to
the spatial resolution of fMRI and that do not show a system-
atic spatial arrangement across individuals was made possible

Fig. 6. Spatial correlation analysis reveals different sizes of digit patches in the neocortex compared with the cerebellum. A: hypothetical voxel activity related
to individual fingers. If a finger activates a large patch of voxels, the correlation between voxel pairs will be positive up to a distance that relates to the size of
the digit patch. B: if fingers activate small and scattered patches, the correlation will be absent for larger spatial distances. C: correlation of voxel pairs within
an informative region as a function of the spatial distance of the pair. Correlations were calculated separately for the estimates for the finger component. No
significant differences between motor and stimulation conditions were found; therefore, the presented data are averaged across conditions. Shaded areas indicate
between-participant standard error. The vertical gray bands demark the distances for neighboring voxels, for which correlations are induced by motion correction
and resampling of the images.
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by employing multivariate analysis techniques (see also Ka-
mitani and Tong 2006; Kay et al. 2008). Rather than looking
for areas that increase in overall BOLD signal compared with
a control condition, multivariate analysis identifies regions
where the pattern of activations or deactivations differs sys-
tematically between experimental conditions. This approach is
similar to that employed in many neurophysiological analyses:
a neural area is considered to be involved in a task if the
population of neurons encodes the factor of interest, even if on
average it does not increase activity during the task.

Our results highlight the difference between information-
based mapping and more traditional analysis techniques. For
example, we found a number of regions that reliably increased
activity in the motor condition but did not show up in the
information-based analysis. One such example is the posterior
vermis (lobules VI and VIII). This region has been recently
shown to receive input from parts of the primary motor cortex
(Coffman and Strick 2009) that relate to the proximal rather
than distal musculature. Our results are consistent with this
notion, because we did not detect any representation of indi-
vidual digits there. Another site is lobule VI, which was
consistently activated bilaterally during force production (Des-

mond et al. 1997; Diedrichsen et al. 2005a) but did not show
evidence of single-digit representations. This region may re-
spond preferentially to more complex movements (Schlerf et
al. 2010) and may be involved in movement preparation and
planning (Hulsmann et al. 2003).

For vibratory stimulation, we found regions that did not
notably increase the overall BOLD-signal but modulated the
activity pattern systematically with the stimulated digit. Al-
though we found some modest increases in average activity in
lobule VIII, these were far below the statistical threshold when
corrected for multiple comparisons (Fox et al. 1985; Tempel
and Perlmutter 1992). This finding can only be explained by
the fact that vibratory stimulation led to systematic and finger-
specific local increases and decreases in activation, which,
when averaged over the whole area, canceled each other out
(Fig. 1A, right). This is congruent with observations that
vibrotactile stimulation can lead to both local increases and
decreases of mossy fiber activity (Eccles et al. 1972).

One possible concern with the study is that the activity in the
motor condition reflected not only motor processes but also
sensory input. Although we designed our keyboard to mini-
mize sensory feedback, Golgi-tendon organs, muscle spindle,
and Merkel discs will have provided sensory information
during the isometric press. Given our results, however, we
think that the BOLD signal in the motor condition reflected
mostly motor processes, because the overall BOLD signal was
much stronger than in the sensory condition. This difference
was also present in other studies that compared active to
passive movement (Mima et al. 1999; Thickbroom et al. 2003).
Thus, although sensory information may have contributed to
our results, it is likely that active force production was the main
determinant of the BOLD signal in the motor condition. Fur-
thermore, we think that the lack of correlation between motor
and sensory patterns in the cerebellum is not simply due to the
fact that the two conditions activated different sensory chan-
nels: in the neocortex, sensory and motor patterns correlated
highly. Although these results need to be replicated with other
forms of sensory stimulation, we are relatively confident that
our results reflect the interaction between motor and sensory
processes.

In addition to the identification of sensory and motor digit
representations, the multivariate approach allowed us to inves-
tigate the characteristics of these representations in detail. Our
results suggest a fundamental difference between digit repre-
sentations in human neocortex and cerebellum, with several
important characteristics (summarized in Fig. 8). First, analysis

Fig. 7. Somatotopic gradient in the finger representation in lobule V and M1
for the motor condition. A: colored circles reflect the center of gravity (CoG)
of activation elicited by force production with a single digit (D1, blue; D2, red;
D3, green; and D5, yellow), presented for all participants in an average group
space (SUIT). This analysis does not reveal any systematic somatotopy. B: the
mean location of the 4 CoGs indicates the center of the informative digit region
for each participant. These centers varied substantially across subjects in
mediolateral direction along the folia. C: after the CoGs are aligned to the
center of the informative region, an orderly digit representation with D1 more
medial and D5 more lateral becomes apparent. D: aligned CoGs for fingers in
the motor condition in M1. A systematic somatotopic gradient is visible with
D1 represented most lateral and D5 most medial.

Table 2. Statistical significance of systematic spatial ordering of
finger representation in the four regions of interest

Stimulation Condition Motor Condition

Area 	 (3, 3, 18) P 
2 	 (3, 3, 18) P 
2

Sensory cortex 0.39 0.059 0.61 0.13 >0.001 0.87
Motor cortex 0.66 0.598 0.34 0.29 0.011 0.71
Lobule V 0.42 0.089 0.58 0.22 0.002 0.78
Lobule VIII 0.76 0.855 0.24 0.66 0.621 0.34

The first column reports Wilks 	 as a statistical test for whether there is a
systematic difference in the spatial x, y, z location of the centers of gravity for
the 4 fingers. P values are derived from a standard �2 approximation (Pearson
and Hartley 1976). Effect size 
2 indicates the percent variance explained
(after subtraction of the between-participant factor).
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of the spatial correlation of finger effects shows that the size of
digit patches in S1 is around 5 mm and slightly smaller in M1.
These numbers agree with results from monkey neurophysiol-
ogy (Kaas et al. 1979; Sur et al. 1982) and human fMRI studies
(Nelson and Chen 2008; Sanchez-Panchuelo et al. 2010). In the
cerebellum, we found that the patterns that encoded finger
information were practically uncorrelated across voxels. This
argues that these representations exist at a spatial scale below
the effective spatial resolution of our fMRI data (taking into
account motion realignment, �3 mm). This result is consistent
with neurophysiological studies that have shown that sensory
representations in the cerebellum are small and possibly frac-
tured (Apps and Garwicz 2005; Bower and Woolston 1983).
Although we cannot exclude the possibility that the difference
to the neocortex was partly caused by the more complex
folding structure of the cerebellum, this idea would have
predicted that the spatial correlations would be higher in the
direction of the folia (roughly horizontal in lobule V) than
across this direction. No such spatial dependence was found,
however.

Second, we showed a somatotopic gradient in lobule V of
the cerebellum, where the digit representations were arranged
in a medial-to-lateral order. This gradient was only significant
in the motor condition and was not present in lobule VIII. Our
findings are in accord with an earlier fMRI study that used a
traditional group analysis (Grodd et al. 2001). At first, the
presence of a somatotopic gradient may seem at odds with the
small and fractured representation highlighted in our other
analyses. The presence of a gradient, however, does not imply
that individual digits are represented in separate patches of
neurons with a strict somatotopic ordering. We found a gradi-
ent of similar strength in M1, where digit movement leads to
activity in strongly overlapping population of neurons (Schieber
2002; Schieber and Hibbard 1993). Thus a weak somatotopic

gradient can indeed occur within a region without a strict ordering
of clearly delineated digit patches.

Third, our results show that the representations involved
during passive sensory stimulation and during active force
production are differently arranged in the cerebellum and the
neocortex, although they overlap in both areas on a macro-
scopic scale. In the neocortex, we found that the pattern elicited
by pressing a particular finger was similar to the pattern elicited
by sensory stimulation of the same finger. This indicates that
patches that are activated by sensory stimulation are also active
during isometric contraction of the same finger (Fig. 8A). In
contrast, this correlation was significantly smaller in the cere-
bellum. We are confident that this finding was not an artifact of
the increased noise or the smaller size of the representations;
we employed a new variance decomposition technique that can
be shown to be able to estimate the representational overlap
independently of these factors (Diedrichsen et al. 2011).

What underlying neurobiological architectures might give
rise to such a finding? One possibility is that sensory and motor
processes activate separate sets of neuronal maps. However,
given that the cerebellum is often considered to be a site where
sensory and motor information are integrated (Gao et al. 1996;
Wolpert et al. 1998), such architecture would be surprising.
Furthermore, in our group analysis, the informative regions for
motor and stimulation condition overlapped substantially, and
no significant difference in mean location was found. We
suggest that our results are congruent with the following
arrangement (Fig. 8B): cerebellar digit patches that modulate
their responses during active motor output and during passive
stimulation may be closely interdigitated. However, patches
that are activated by action of a particular digit directly neigh-
bor, or even overlap with, patches that are activated by sensory
stimulation of a different digit. Thus sensory and motor patches
referring to the same finger would not overlap with much
higher probability than sensory and motor patches of unrelated
fingers. Such an organization would account for the finding of
macroscopic spatial overlap but low correlation between pat-
terns.

What could the computational function of such an arrange-
ment be? In the neocortex, the movement of each digit is
closely paired with the most likely sensory consequence of that
action, sensory stimulation of the same finger. In contrast, in
the cerebellum, movement of a digit may lead to activity in
neurons that are also activated by a variety of different sensory
consequences, ranging from stimulation of other fingers to
maybe even sensory input from the arm or face. Such an
arrangement may enable the cerebellum to quickly form new
associations between movements and relatively arbitrary, re-
mote sensory consequences. This is a key computational re-
quirement for learning new motor tasks, in which actions and
outcomes can take on novel and never before experienced
relationships. Consistent with this functional hypothesis, cere-
bellar patients are severely and specifically impaired on such
tasks (Diedrichsen et al. 2005b; Smith and Shadmehr 2005). In
summary, the way motor and sensory events are represented
may support the quick learning of action-outcome associations
(i.e., forward models), which has been hypothesized to be the
main computational function of the cerebellum (Wolpert et al.
1998).

Fig. 8. Hypothetical structure of cortical and cerebellar digit representations
based on the results of the multivariate analysis. A: in the neocortex, repre-
sentations for the thumb (blue), index (red), middle (green), and little finger
(yellow) are arranged in 5-mm (S1) or 4-mm (M1) large patches. The ring
finger was not tested in the experiment. Patches activated by an action (solid
outline) or passive vibratory stimulation (dashed outline) overlap spatially. The
orderly somatotopic organization of S1 is shown, whereas the somatotopy in
M1 is much less pronounced. B: in the cerebellum, patches are smaller than 3
mm. Sensory and motor patches for the same finger do not overlap systemat-
ically but are interdigitated in a nearly unrelated fashion.

3051FINGER REPRESENTATION IN THE CEREBELLUM

J Neurophysiol • VOL 105 • JUNE 2011 • www.jn.org

 on D
ecem

ber 7, 2011
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


ACKNOWLEDGMENTS

We thank Nikolaas Oosterhof for helpful discussions on multivariate and
surface-based analysis.

GRANTS

This work was supported by National Science Foundation Grant BSC
0726685 (to J. Diedrichsen) and Welsh Institute of Cognitive Neuroscience
Grant WBC027 (to D. MJ. McGonigle and J. Diedrichsen).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar
information processing. Nat Rev Neurosci 6: 297–311, 2005.

Ashburner J, Friston KJ. Unified segmentation. Neuroimage 26: 839–851,
2005.

Attwell D, Iadecola C. The neural basis of functional brain imaging signals.
Trends Neurosci 25: 621–625, 2002.

Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward
movement control. Curr Opin Neurobiol 16: 645–649, 2006.

Bower JM, Woolston DC. Congruence of spatial organization of tactile
projections to granule cell and Purkinje cell layers of cerebellar hemispheres
of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol
49: 745–766, 1983.

Casey KL, Minoshima S, Morrow TJ, Koeppe RA. Comparison of human
cerebral activation pattern during cutaneous warmth, heat pain, and deep
cold pain. J Neurophysiol 76: 571–581, 1996.

Coffman KA, Strick PL. The primary motor cortex is a source of input to the
posterior vermis. Soc Neurosci Abstr 367.326, 2009.

Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G.
Automated multi-modality image registration based on information theory.
In: 14th International Conference, edited by Bizais Y, Barillot C, Di Paola
R. Ile de Berder, France: Springer, 1995, p. 263–274.

Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain
reading”: detecting and classifying distributed patterns of fMRI activity in
human visual cortex. Neuroimage 19: 261–270, 2003.

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmen-
tation and surface reconstruction. Neuroimage 9: 179–194, 1999.

Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular
patterns of cerebellar activation in verbal working-memory and finger-
tapping tasks as revealed by functional MRI. J Neurosci 17: 9675–9685,
1997.

Diedrichsen J. A spatially unbiased atlas template of the human cerebellum.
Neuroimage 33: 127–138, 2006.

Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabi-
listic MR atlas of the human cerebellum. Neuroimage 46: 39–46, 2009.

Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of
reach errors. J Neurosci 25: 9919–9931, 2005a.

Diedrichsen J, Ridgway GR, Friston KJ, Wiestler T. Comparing the
similarity and spatial structure of neural representations: a pattern-compo-
nent model. Neuroimage 55: 1665–1678, 2011.

Diedrichsen J, Verstynen T, Lehman SL, Ivry RB. Cerebellar involvement
in anticipating the consequences of self-produced actions during bimanual
movements. J Neurophysiol 93: 801–812, 2005b.

Diedrichsen J, Verstynen T, Schlerf J, Wiestler T. Advances in functional
imaging of the human cerebellum. Curr Opin Neurol 23: 382–387, 2010.

Eccles JC, Sabah NH, Schmidt RF, Taborikova H. Cutaneous mechanore-
ceptors influencing impulse discharges in cerebellar cortex. I. In mossy
fibers. Exp Brain Res 15: 245–260, 1972.

Fox PT, Raichle ME, Thach WT. Functional mapping of the human cere-
bellum with positron emission tomography. Proc Natl Acad Sci USA 82:
7462–7466, 1985.

Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC.
Assessing the significance of focal activations using their spatial extent.
Hum Brain Mapp 1: 210–220, 1993.

Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum
implicated in sensory acquisition and discrimination rather than motor
control. Science 272: 545–547, 1996.

Geyer S, Schleicher A, Schormann T, Mohlberg H, Bodegard A, Roland
PE, Zilles K. Integration of microstructural and functional aspects of human
somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas.
Anat Embryol (Berl) 204: 351–366, 2001.

Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor
mapping of the human cerebellum: fMRI evidence of somatotopic organi-
zation. Hum Brain Mapp 13: 55–73, 2001.

Grootoonk S, Hutton C, Ashburner J, Howseman AM, Josephs O, Rees G,
Friston KJ, Turner R. Characterization and correction of interpolation
effects in the realignment of fMRI time series. Neuroimage 11: 49–57,
2000.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P.
Distributed and overlapping representations of faces and objects in ventral
temporal cortex. Science 293: 2425–2430, 2001.

Haynes JD, Rees G. Predicting the orientation of invisible stimuli from
activity in human primary visual cortex. Nat Neurosci 8: 686–691, 2005a.

Haynes JD, Rees G. Predicting the stream of consciousness from activity in
human visual cortex. Curr Biol 15: 1301–1307, 2005b.

Hulsmann E, Erb M, Grodd W. From will to action: sequential cerebellar
contributions to voluntary movement. Neuroimage 20: 1485–1492, 2003.

Indovina I, Sanes JN. On somatotopic representation centers for finger
movements in human primary motor cortex and supplementary motor area.
Neuroimage 13: 1027–1034, 2001.

Johnson KO. The roles and functions of cutaneous mechanoreceptors. Curr
Opin Neurobiol 11: 455–461, 2001.

Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM. Multiple represen-
tations of the body within the primary somatosensory cortex of primates.
Science 204: 521–523, 1979.

Kamitani Y, Tong F. Decoding seen and attended motion directions from
activity in the human visual cortex. Curr Biol 16: 1096–1102, 2006.

Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images
from human brain activity. Nature 452: 352–355, 2008.

Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal
cortex of a nonhuman primate. J Neurosci 23: 8432–8444, 2003.

Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain
mapping. Proc Natl Acad Sci USA 103: 3863–3868, 2006.

Kriegeskorte N, Mur M, Bandettini P. Representational similarity analy-
sis—connecting the branches of systems neuroscience. Front Syst Neurosci
2: 4, 2008a.

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka
K, Bandettini PA. Matching categorical object representations in inferior
temporal cortex of man and monkey. Neuron 60: 1126–1141, 2008b.

Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook
JM, Cynader MS, Schoppmann A. Variability in hand surface represen-
tations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol
258: 281–296, 1987.

Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y,
Shibasaki H. Brain structures related to active and passive finger move-
ments in man. Brain 122: 1989–1997, 1999.

Misaki M, Kim Y, Bandettini PA, Kriegeskorte N. Comparison of multi-
variate classifiers and response normalizations for pattern-information
fMRI. Neuroimage 53: 103–118, 2010.

Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content
with pattern-information fMRI—an introductory guide. Soc Cogn Affect
Neurosci 4: 101–109, 2009.

Nelson AJ, Chen R. Digit somatotopy within cortical areas of the postcentral
gyrus in humans. Cereb Cortex 18: 2341–2351, 2008.

Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10: 424–430,
2006.

Oosterhof NN, Wiestler T, Downing PE, Diedrichsen J. A comparison of
volume-based and surface-based multi-voxel pattern analysis. Neuroimage.
In press.

Pearson ES, Hartley HO. Biometrika Tables for Statisticians. Cambridge,
UK: Cambridge University Press, 1976.

Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI:
a tutorial overview. Neuroimage 45: S199–S209, 2009.

Peyre G. Toolbox Fast Marching—A toolbox for Fast Marching and level sets
computations (Online). http://www.ceremade.dauphine.fr/�peyre/matlab/
fast-marching/content.html.

Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensi-
tivity encoding for fast MRI. Magn Reson Med 42: 952–962, 1999.

Rathelot JA, Strick PL. Muscle representation in the macaque motor cortex:
an anatomical perspective. Proc Natl Acad Sci USA 103: 8257–8262, 2006.

3052 FINGER REPRESENTATION IN THE CEREBELLUM

J Neurophysiol • VOL 105 • JUNE 2011 • www.jn.org

 on D
ecem

ber 7, 2011
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


Rijntjes M, Buechel C, Kiebel S, Weiller C. Multiple somatotopic represen-
tations in the human cerebellum. Neuroreport 10: 3653–3658, 1999.

Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping
human somatosensory cortex in individual subjects with 7T functional MRI.
J Neurophysiol 103: 2544–2556, 2010.

Schieber MH. Motor cortex and the distributed anatomy of finger movements.
Adv Exp Med Biol 508: 411–416, 2002.

Schieber MH, Hibbard LS. How somatotopic is the motor cortex hand area?
Science 261: 489–492, 1993.

Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel
somatopic map in the human neocerebellum during complex actions. J
Neurophysiol 103: 3330–3336, 2010.

Smith MA, Shadmehr R. Intact ability to learn internal models of arm
dynamics in Huntington’s disease but not cerebellar degeneration. J Neu-
rophysiol 93: 2809–2821, 2005.

Sur M, Nelson RJ, Kaas JH. Representations of the body surface in cortical
areas 3b and 1 of squirrel monkeys: comparisons with other primates. J
Comp Neurol 211: 177–192, 1982.

Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon CH, Kim SG, Tong
F. Multiscale pattern analysis of orientation-selective activity in the primary
visual cortex. J Neurosci 30: 325–330, 2010.

Tempel LW, Perlmutter JS. Vibration-induced regional cerebral blood flow
responses in normal aging. J Cereb Blood Flow Metab 12: 554–561, 1992.

Thickbroom GW, Byrnes ML, Mastaglia FL. Dual representation of the
hand in the cerebellum: activation with voluntary and passive finger move-
ment. Neuroimage 18: 670–674, 2003.

Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum.
Trends Cogn Sci 2: 313–321, 1998.

Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and
motor areas of human cerebral cortex as determined by direct recording of
evoked potentials and electrical stimulation. J Neurosurg 51: 476–506,
1979.

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A
unified statistical approach for determining significant voxels in images of
cerebral activation. Hum Brain Mapp 12: 900–918, 1996.

Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A,
Winkler P. Localization of the motor hand area to a knob on the precentral
gyrus. A new landmark. Brain 120: 141–157, 1997.

Zhang Y, Forster C, Milner TA, Iadecola C. Attenuation of activity-induced
increases in cerebellar blood flow by lesion of the inferior olive. Am J
Physiol Heart Circ Physiol 285: H1177–H1182, 2003.

3053FINGER REPRESENTATION IN THE CEREBELLUM

J Neurophysiol • VOL 105 • JUNE 2011 • www.jn.org

 on D
ecem

ber 7, 2011
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/

